Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 129(12): 127201, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36179160

ABSTRACT

CrBr_{3} is an excellent realization of the two-dimensional honeycomb ferromagnet, which offers a bosonic equivalent of graphene with Dirac magnons and topological character. We perform inelastic neutron scattering measurements using state-of-the-art instrumentation to update 50-year-old data, thereby enabling a definitive comparison both with recent experimental claims of a significant gap at the Dirac point and with theoretical predictions for thermal magnon renormalization. We demonstrate that CrBr_{3} has next-neighbor J_{2} and J_{3} interactions approximately 5% of J_{1}, an ideal Dirac magnon dispersion at the K point, and the associated signature of isospin winding. The magnon lifetime and the thermal band renormalization show the universal T^{2} evolution expected from an interacting spin-wave treatment, but the measured dispersion lacks the predicted van Hove features, pointing to the need for more sophisticated theoretical analysis.

2.
Phys Rev Lett ; 124(25): 257201, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32639763

ABSTRACT

We have used neutron spectroscopy to investigate the spin dynamics of the quantum (S=1/2) antiferromagnetic Ising chains in RbCoCl_{3}. The structure and magnetic interactions in this material conspire to produce two magnetic phase transitions at low temperatures, presenting an ideal opportunity for thermal control of the chain environment. The high-resolution spectra we measure of two-domain-wall excitations therefore characterize precisely both the continuum response of isolated chains and the "Zeeman-ladder" bound states of chains in three different effective staggered fields in one and the same material. We apply an extended Matsubara formalism to obtain a quantitative description of the entire dataset, Monte Carlo simulations to interpret the magnetic order, and finite-temperature density-matrix renormalization-group calculations to fit the spectral features of all three phases.

3.
Phys Rev Lett ; 121(11): 117201, 2018 Sep 14.
Article in English | MEDLINE | ID: mdl-30265101

ABSTRACT

We report an extraordinary pressure dependence of the magnetic interactions in the metal-organic system [CuF_{2}(H_{2}O)_{2}]_{2}pyrazine. At zero pressure, this material realizes a quasi-two-dimensional spin-1/2 square-lattice Heisenberg antiferromagnet. By high-pressure, high-field susceptibility measurements we show that the dominant exchange parameter is reduced continuously by a factor of 2 on compression. Above 18 kbar, a phase transition occurs, inducing an orbital re-ordering that switches the dimensionality, transforming the quasi-two-dimensional lattice into weakly coupled chains. We explain the microscopic mechanisms for both phenomena by combining detailed x-ray and neutron diffraction studies with quantitative modeling using spin-polarized density functional theory.

4.
JDR Clin Trans Res ; 3(2): 161-169, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29568802

ABSTRACT

The purposes of this study were to describe primary tooth emergence in an American Indian (AI) population during the first 36 mo of life to compare 1) patterns of emergence between male and female children and 2) tooth emergence between these AI children and other U.S. ethnic groups. Data were derived from a birth cohort of 239 AI children from a Northern Plains tribe participating in a longitudinal study of early childhood caries, with examination data at target ages of 8, 12, 16, 22, 28, and 36 mo of age (±1 mo). Patterns of emergence in AI children were characterized and sex comparisons accomplished with interval-censored survival methodology. Numbers of erupted teeth in AI children at each age were compared via Kruskal-Wallis tests against those in children of the same age, as drawn from a cross-sectional study of dental caries patterns in Arizona; these comparisons were based on the dental examinations of 547 White non-Hispanic and 677 Hispanic children. Characterization of time to achievement of various milestones-including emergence of the anterior teeth, the first molars, and the complete primary dentition-provided no evidence of sex differences among AI children. AI children had significantly more teeth present at 8 mo (median, 3) than either White non-Hispanic (P < 0.0063) or Hispanic (P < 0.0001) children (median, 2 each). This was also true at 12 mo (P < 0.001; medians, 8 vs. 6 and 7, respectively) and 16 mo (P < 0.001; medians, 12 vs. 11 each). Less pronounced differences were seen at 22 mo (P < 0.0001). White non-Hispanic and Hispanic children did not differ at any time considered (P > 0.05). These results provide evidence of earlier tooth emergence in AI children than in the other 2 ethnicities. Although the underlying etiology of the severity of early childhood caries in AI children is likely to be multifactorial, earlier tooth emergence may be a contributing factor. Knowledge Transfer Statement: The findings of this study have practical implications for practitioners providing childhood oral health care to ethnic groups with early tooth emergence. It may be important to provide parents with information on toothbrushing, dentist visits, and other practices supportive of good oral health as early as possible to protect their children's primary dentition.

5.
Phys Rev Lett ; 118(17): 177202, 2017 Apr 28.
Article in English | MEDLINE | ID: mdl-28498681

ABSTRACT

The challenge of one-dimensional systems is to understand their physics beyond the level of known elementary excitations. By high-resolution neutron spectroscopy in a quantum spin-ladder material, we probe the leading multiparticle excitation by characterizing the two-magnon bound state at zero field. By applying high magnetic fields, we create and select the singlet (longitudinal) and triplet (transverse) excitations of the fully spin-polarized ladder, which have not been observed previously and are close analogs of the modes anticipated in a polarized Haldane chain. Theoretical modeling of the dynamical response demonstrates our complete quantitative understanding of these states.

6.
Chem Commun (Camb) ; 50(93): 14504-7, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25308125

ABSTRACT

Pressure-driven orbital reordering in the quantum magnet [CuF2(H2O)2(pyz)], (pyz = pyrazine), dramatically affects its magnetic exchange interactions. The crystal chemistry of this system is enriched with a new phase above 3 GPa, surprisingly concomitant with other polymorphs. Moreover, we discovered an unprecedented compound with a different stoichiometry, [(CuF2(H2O)2)2(pyz)], featuring magnetic bi-layers.

7.
J Dent Res ; 93(10): 950-8, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24966231

ABSTRACT

Alveolar ridge preservation strategies are indicated to minimize the loss of ridge volume that typically follows tooth extraction. The aim of this systematic review was to determine the effect that socket filling with a bone grafting material has on the prevention of postextraction alveolar ridge volume loss as compared with tooth extraction alone in nonmolar teeth. Five electronic databases were searched to identify randomized clinical trials that fulfilled the eligibility criteria. Literature screening and article selection were conducted by 3 independent reviewers, while data extraction was performed by 2 independent reviewers. Outcome measures were mean horizontal ridge changes (buccolingual) and vertical ridge changes (midbuccal, midlingual, mesial, and distal). The influence of several variables of interest (i.e., flap elevation, membrane usage, and type of bone substitute employed) on the outcomes of ridge preservation therapy was explored via subgroup analyses. We found that alveolar ridge preservation is effective in limiting physiologic ridge reduction as compared with tooth extraction alone. The clinical magnitude of the effect was 1.89 mm (95% confidence interval [CI]: 1.41, 2.36; p < .001) in terms of buccolingual width, 2.07 mm (95% CI: 1.03, 3.12; p < .001) for midbuccal height, 1.18 mm (95% CI: 0.17, 2.19; p = .022) for midlingual height, 0.48 mm (95% CI: 0.18, 0.79; p = .002) for mesial height, and 0.24 mm (95% CI: -0.05, 0.53; p = .102) for distal height changes. Subgroup analyses revealed that flap elevation, the usage of a membrane, and the application of a xenograft or an allograft are associated with superior outcomes, particularly on midbuccal and midlingual height preservation.


Subject(s)
Alveolar Ridge Augmentation/methods , Tooth Extraction , Alveolar Bone Loss/prevention & control , Alveolar Process/pathology , Bone Transplantation/methods , Humans , Membranes, Artificial , Randomized Controlled Trials as Topic , Surgical Flaps/classification , Tooth Socket/surgery
8.
Rapid Commun Mass Spectrom ; 27(15): 1715-22, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23821565

ABSTRACT

RATIONALE: The vaporization of Sm, Eu, and Yb tri- and dibromides is accompanied by decomposition and disproportionation reactions. These result in complex vapor compositions whose analysis is an intricate problem for experimentalists. Approaches have been developed to interpret mass spectra and accurately determine the vapor composition of thermally unstable compounds. METHODS: A sector type magnet instrument was used. A combined ion source allowed the study of both the molecular and ionic vapor compositions in the electron ionization (EI) and the thermionic emission (TE) modes. The methodological approaches were based on a joint analysis of the ionization efficiency functions, the temperature and time dependences of the ion currents, and special mathematical data evaluation. RESULTS: The vaporization of SmBr3 , YbBr3 , SmBr2 , EuBr2 , and YbBr2 was studied in the temperature range of 850-1300 K. An initial stage of incongruent vaporization was observed in the case of the tribromides, SmBr2 , and YbBr2 . This eventually changed to a congruent vaporization stage. Various neutral (Ln, Br, Br2 , LnBr, LnBr2 , LnBr3 , Ln2 Br4 , Ln2 Br5 , and Ln2 Br6 ) and charged (Br(-), LnBr3 (-), LnBr4 (-)) species were detected at different vaporization stages. CONCLUSIONS: The quantitative vapor composition of Sm, Eu, and Yb tri- and dibromides was determined. It was found that only EuBr2 was stable in the studied temperature range. The developed approaches can be useful in the case of other thermally unstable compounds.

9.
J Phys Condens Matter ; 25(1): 014004, 2013 Jan 09.
Article in English | MEDLINE | ID: mdl-23221064

ABSTRACT

Magnetic insulators have proven to be usable as quantum simulators for itinerant interacting quantum systems. In particular the compound (C(5)H(12)N)(2)CuBr(4) (for short: (Hpip)(2)CuBr(4)) was shown to be a remarkable realization of a Tomonaga-Luttinger liquid (TLL) and allowed us to quantitatively test the TLL theory. Substitution weakly disorders this class of compounds and thus allows us to use them to tackle questions pertaining to the effect of disorder in TLL as well, such as that of the formation of the Bose glass. In this paper we present, as a first step in this direction, a study of the properties of the related (Hpip)(2)CuCl(4) compound. We determine the exchange couplings and compute the temperature and magnetic field dependence of the specific heat, using a finite temperature density matrix renormalization group procedure. Comparison with the measured specific heat at zero magnetic field confirms the exchange parameters and Hamiltonian for the (Hpip)(2)CuCl(4) compound, giving the basis needed to begin studying the disorder effects.


Subject(s)
Models, Chemical , Models, Molecular , Quantum Theory , Solutions/chemistry , Computer Simulation , Spin Labels
10.
Phys Rev Lett ; 107(11): 115502, 2011 Sep 09.
Article in English | MEDLINE | ID: mdl-22026684

ABSTRACT

We introduce a novel method for local structure determination with a spatial resolution of the order of 0.01 Å. It can be applied to materials containing clusters of exchange-coupled magnetic atoms. We use neutron spectroscopy to probe the energies of the cluster excitations which are determined by the interatomic coupling strength J. Since for most materials J is related to the interatomic distance R through a linear relation dJ/dR=α (for dR/R≪1), we can directly derive the local distance R from the observed excitation energies. This is exemplified for the mixed one-dimensional paramagnetic compound CsMn(x)Mg(1-x)Br3 (x=0.05,0.10) containing manganese dimers oriented along the hexagonal c axis. Surprisingly, the resulting Mn-Mn distances R do not vary continuously with increasing internal pressure but lock in at some discrete values.

11.
J Phys Condens Matter ; 23(26): 266004, 2011 Jul 06.
Article in English | MEDLINE | ID: mdl-21673404

ABSTRACT

The multiferroic material BaMnF(4) has been investigated with unpolarized and polarized neutron diffraction. The structure has been shown to be antiferromagnetic. The magnetic moments are aligned at 12° to the b direction in the bc plane, 3° different from the previously determined value. The ferromagnetic component that is indicative of the linear magnetoelectric effect was not observed.

12.
Phys Rev Lett ; 102(10): 107204, 2009 Mar 13.
Article in English | MEDLINE | ID: mdl-19392156

ABSTRACT

We measure by inelastic neutron scattering the spin excitation spectra as a function of applied magnetic field in the quantum spin-ladder material (C5H12N)2CuBr4. Discrete magnon modes at low fields in the quantum disordered phase and at high fields in the saturated phase contrast sharply with a spinon continuum at intermediate fields characteristic of the Luttinger-liquid phase. By tuning the magnetic field, we drive the fractionalization of magnons into spinons and, in this deconfined regime, observe both commensurate and incommensurate continua.

13.
Phys Rev Lett ; 101(24): 247202, 2008 Dec 12.
Article in English | MEDLINE | ID: mdl-19113659

ABSTRACT

The phase diagram in temperature and magnetic field of the metal-organic, two-leg, spin-ladder compound (C5H12N)2CuBr4 is studied by measurements of the specific heat and the magnetocaloric effect. We demonstrate the presence of an extended spin Luttinger-liquid phase between two field-induced quantum critical points and over a broad range of temperature. Based on an ideal spin-ladder Hamiltonian, comprehensive numerical modeling of the ladder specific heat yields excellent quantitative agreement with the experimental data across the entire phase diagram.

14.
Phys Rev Lett ; 100(20): 205701, 2008 May 23.
Article in English | MEDLINE | ID: mdl-18518554

ABSTRACT

We follow the evolution of the elementary excitations of the quantum antiferromagnet TlCuCl3 through the pressure-induced quantum critical point, which separates a dimer-based quantum disordered phase from a phase of long-ranged magnetic order. We demonstrate by neutron spectroscopy the continuous emergence in the weakly ordered state of a low-lying but massive excitation corresponding to longitudinal fluctuations of the magnetic moment. This mode is not present in a classical description of ordered magnets, but is a direct consequence of the quantum critical point.

15.
J Phys Condens Matter ; 18(26): 6133-48, 2006 Jul 05.
Article in English | MEDLINE | ID: mdl-21690826

ABSTRACT

We report the optical and scintillation properties of the Ce(3+)-doped bromoelpasolites Cs(2)NaREBr(6) (RE = La,Y,Lu). The γ-ray scintillation light yield of these materials varies from 6000 to 17 000 photons per MeV absorbed γ-ray energy. At room temperature (RT), the γ-ray scintillation decay curves for all compounds show a fast component of 61 ns, whereas the intrinsic Ce(3+) decay time is 30 ns. The scintillation mechanism in elpasolites is addressed. In Cs(2)NaLuBr(6):Ce(3+) and Cs(2)NaYBr(6):Ce(3+), we observe for the first time the so-called Ce(3+) anomalous emission in bromide compounds. This emission previously observed for chloride compounds is an ultrafast Ce(3+) emission with a selective excitation mechanism. The decay time of the anomalous emission at 10 K in bromide compounds (∼7.80 ns) is faster than that in chloride compounds (∼9.90 ns). Two bands of the anomalous emission are resolved for the first time. The mechanism behind this emission is discussed.

16.
Phys Rev Lett ; 95(26): 267201, 2005 Dec 31.
Article in English | MEDLINE | ID: mdl-16486391

ABSTRACT

The compound TlCuCl(3) represents a model system of dimerized quantum spins with strong interdimer interactions. We investigate the triplet dispersion as a function of temperature by inelastic neutron scattering experiments on single crystals. By comparison with a number of theoretical approaches we demonstrate that the description of Troyer, Tsunetsugu, and Würtz [Phys. Rev. B 50, 13 515 (1994)10.1103/Phys. Rev. B 50, 13515] provides an appropriate quantum statistical model for dimer spin systems at finite temperatures, where many-body correlations become particularly important.

17.
Phys Rev Lett ; 93(3): 037207, 2004 Jul 16.
Article in English | MEDLINE | ID: mdl-15323865

ABSTRACT

Elastic and inelastic neutron scattering experiments have been performed on the dimer spin system NH4CuCl3, which shows plateaus in the magnetization curve at m=1/4 and m=3/4 of the saturation value. Two structural phase transitions at T1 approximately 156 K and at T(2)=70 K lead to a doubling of the crystallographic unit cell along the b direction and as a consequence a segregation into different dimer subsystems. Long-range magnetic ordering is reported below T(N)=1.3 K. The magnetic field dependence of the excitation spectrum identifies successive quantum phase transitions of the dimer subsystems as the driving mechanism for the unconventional magnetization process in agreement with a recent theoretical model.

18.
Phys Rev Lett ; 92(25 Pt 1): 257202, 2004 Jun 25.
Article in English | MEDLINE | ID: mdl-15245057

ABSTRACT

The origin of higher-order exchange interactions in localized S-state systems has been the subject of intensive investigations in the past. In particular, it has been suggested that a biquadratic exchange term may arise from the magnetoelastic energy. Here we report on the pressure and temperature dependence of the excitation spectra of magnetic Mn2+ dimers in CsMn0.28Mg0.72Br3 probed by inelastic neutron scattering. Biquadratic exchange and a strong distance dependence of the bilinear exchange are observed. It is shown that the mechanism of local exchange striction may explain the occurrence of biquadratic exchange in accordance with the elastic properties of the compound.

19.
Phys Rev Lett ; 93(25): 257201, 2004 Dec 17.
Article in English | MEDLINE | ID: mdl-15697931

ABSTRACT

The condensation of magnetic quasiparticles into the nonmagnetic ground state has been used to explain novel magnetic ordering phenomena observed in quantum spin systems. We present neutron scattering results across the pressure-induced quantum phase transition and for the novel ordered phase of the magnetic insulator TlCuCl3, which are consistent with the theoretically predicted two degenerate gapless Goldstone modes, similar to the low-energy spin excitations in the field-induced case. These novel experimental findings complete the field-induced Bose-Einstein condensate picture and support the recently proposed field-pressure phase diagram common for quantum spin systems with an energy gap of singlet-triplet nature.

SELECTION OF CITATIONS
SEARCH DETAIL
...