Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Opt Express ; 31(18): 29245-29254, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37710729

ABSTRACT

We detail the design and performance of a high efficiency in-band pumped thulium fiber amplifier operating at the 100 W level. Using a novel pumping architecture based on three incoherently combined thulium fiber oscillators at 1904 nm and a seed laser tunable from 1970-1990 nm, efficient amplification is demonstrated in a high dopant concentration 25/65/250 µm thulium fiber. Here we use the 65 µm pedestal surrounding the core as a pump cladding to increase the cladding to core overlap and improve the overall pump absorption. Up to 89% slope efficiency is obtained with ∼100 W output power at 1990 nm. These results indicate that in-band pumping is a viable route to circumvent the thermal limitations associated with 793 nm diode pumping and provide a pathway for development of multi-kW laser sources in the 2 µm spectral window.

2.
Opt Express ; 31(9): 14286-14298, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37157296

ABSTRACT

The first steps towards the development and characterization of next-generation chirped volume Bragg gratings (CVBGs) by means of fs laser inscription were made. Based on the phase mask inscription technique we realized CVBGs in fused silica with a 3 × 3 mm2 aperture and a length of almost 12 mm with a chirp rate of ∼190 ps/nm around a central wavelength of 1030.5 nm. Strong mechanical stresses induced serious polarization and phase distortions of the radiation. We show a possible approach to solution of this problem. The change in the linear absorption coefficient associated with local modification of fused silica is quite small, enabling utilization of this type of gratings in high average power lasers.

3.
Opt Lett ; 47(8): 2085-2088, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35427343

ABSTRACT

We report the development of a widely tunable mode-locked thulium-doped fiber laser based on a robust chirped fiber Bragg grating (CFBG). By applying mechanical tension and compression to the CFBG, an overall tunability of 20.1 nm, spanning from 2022.1 nm to 2042.2 nm, was achieved. The observed mode-locked pulse train from this fiber laser has a repetition rate of 9.4 MHz with an average power of 12.6 dBm and a pulse duration between 9.0 ps and 12.8 ps, depending on the central wavelength. To the best of our knowledge, this is the first demonstration of a tunable mode-locked thulium-doped fiber laser operating beyond 2 µm using a CFBG as a wavelength-selective element.

4.
Opt Lett ; 45(23): 6526-6529, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33258853

ABSTRACT

We present the tuning of the dispersion properties of a femtosecond (fs) laser inscribed chirped fiber Bragg grating (CFBG), realized by selectively modifying the refractive index of the already inscribed CFBG by fs laser post-processing. This Letter demonstrates for the first time, to the best of our knowledge, a flexible approach for tailoring higher-order dispersion terms of a fs inscribed CFBG via fs post-processing of selected grating regions, thus paving the way, e.g., for applications in dispersion management of ultrashort pulse fiber lasers.

5.
Opt Lett ; 45(6): 1447-1450, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-32163988

ABSTRACT

We present highly robust fiber Bragg gratings (FBGs) in passive large-mode-area fibers for kilowatt fiber laser systems. The gratings were inscribed directly through the fiber coating using near-infrared femtosecond laser pulses and then implemented in an all-fiber ytterbium-doped single-mode oscillator setup reaching up to 5 kW signal output power. The untreated cooled FBGs showed thermal coefficients as low as ${1}\;{\rm K}\;{{\rm kW}^{ - 1}}$1KkW-1, proving excellent qualification for the implementation into robust high-power fiber laser setups.

6.
Opt Lett ; 44(16): 3980-3983, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31415527

ABSTRACT

We present efficient long period fiber gratings written with femtosecond laser pulses at 800 nm and an amplitude mask, to the best of our knowledge, for the first time. The measured transmission spectra depict strong resonances, while the total grating length and polarization-dependent loss could be significantly reduced compared to previous results. Two gratings are exemplarily shown-one in a standard single mode, and one in a large-mode-area fiber revealing a predictable spectrum without intermediate peaks due to the suppression of coupling to asymmetric higher-order cladding modes.

7.
Opt Express ; 27(4): 4292-4303, 2019 Feb 18.
Article in English | MEDLINE | ID: mdl-30876046

ABSTRACT

We report on the detailed investigation of the core to cladding mode coupling in femtosecond-written long period fiber gratings (LPFG). It is shown that the excitation of higher-order cladding modes with strong selectivity and high precision is possible. The coupling behavior of several gratings, as well as its dependence on the modified core cross-section, is determined theoretically and confirmed experimentally by its spectral response. The presented tool paves the way for a completely new class of tailored LPFGs for different fiber integrated devices.

8.
Opt Lett ; 44(4): 723-726, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30767971

ABSTRACT

We investigate the high-power durability of fiber Bragg gratings written directly into an ytterbium-doped large mode area fiber using ultrashort laser pulses. The gratings were successfully integrated as a high reflector into an oscillator setup reaching up to 1.9 kW signal output power with an efficiency of 87%. Defect states induced during the inscription process could be drastically reduced by a self-annealing process resulting in a stable laser performance.

9.
Opt Lett ; 43(15): 3794-3797, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30067681

ABSTRACT

We demonstrate the fabrication of aperiodic fiber Bragg gratings (AFBGs) for their application as filter elements. Direct inscription was performed by focusing ultrashort laser pulses with an oil-immersion objective into the fiber core and utilizing the line-by-line technique for flexible period adaptation. The AFBGs inscribed allow for the suppression of 10 lines in a single grating and are in excellent agreement with simulations based on the specific design. Applications in astronomy for the suppression of hydroxyl emission lines are discussed.

10.
Opt Lett ; 42(20): 4215-4218, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-29028051

ABSTRACT

The period of fiber Bragg gratings is adapted by shaping the wavefronts of ultrashort laser pulses applied in a phase mask inscription technique. A specially designed deformable mirror, based on a dielectric substrate to withstand high peak powers, is utilized to deform the wavefront. A shift of about 11 nm is demonstrated for a Bragg wavelength around 1550 nm.

11.
Opt Lett ; 42(3): 623-626, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28146543

ABSTRACT

Ultrashort laser pulses are used to inscribe volume Bragg gratings (VBGs) into fused silica. These VBGs demonstrate excellent performance for the external stabilization of laser diode bars. The stabilized system emits at a wavelength of 969 nm with a signal width (FWHM) of 100 pm and shows a spectral drift as low as 24 pm for a change in output power of 45 W for a grating surface area of 10 mm2.

12.
Opt Lett ; 41(1): 17-20, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26696147

ABSTRACT

We report on the inscription of fiber Bragg gratings using femtosecond laser pulses and the phase-mask technique. The wavefront of the inscription laser is variably tuned with a spatial light modulator (SLM). By applying Fresnel lenses with different focal lengths, the period of the fiber Bragg gratings could be shifted. A linear change of the grating period for a FBG inscribed with a third-order deformed wavefront and a quadratic-period behavior for a fourth-order wavefront could be verified experimentally for the first time.

13.
Opt Lett ; 40(12): 2766-9, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26076257

ABSTRACT

In this Letter, we present a direct writing technique for two-dimensional periodic volume Bragg gratings (VBGs) in fused silica based on the phase mask technology, ultrashort laser pulses, and three-beam interference. An algorithm to predict the grating pattern and its diffraction behavior under collimated, spectral broad illumination is developed. The predicted data are in good agreement with the measurements.

14.
Opt Express ; 21(22): 26854-67, 2013 Nov 04.
Article in English | MEDLINE | ID: mdl-24216907

ABSTRACT

Point-by-point (PbP) inscription of fiber Bragg gratings using femtosecond laser pulses is a versatile technique that is currently experiencing significant research interest for fiber laser and sensing applications. The recent demonstration of apodized gratings using this technique provides a new avenue of investigation into the nature of the refractive index perturbation induced by the PbP modifications, as apodized gratings are sensitive to variation in the average background index along the grating. In this work we compare experimental results for Gaussian- and sinc-apodized PbP gratings to a coupled-mode theory model, demonstrating that the refractive index perturbation induced by the PbP modifications has a negative contribution to the average background index which is small, despite the presence of strong reflective coupling. By employing Fourier analysis to a simplified model of an individual modification, we show that the presence of a densified shell around a central void can produce strong reflective coupling with near-zero change in the average background index. This result has important implications for the experimental implementation of apodized PbP gratings, which are of interest for a range of fiber laser and fiber sensing technologies.

15.
Opt Lett ; 38(11): 1918-20, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23722789

ABSTRACT

We report the inscription of low-loss fiber Bragg gratings using focused femtosecond (fs) pulses and a continuous core-scanning technique. This direct-write technique produces high-fidelity Type I-IR gratings that share the inherent advantages of other direct-write methods, such as the point-by-point (PbP) method, for which the grating period is a free parameter. However, here we demonstrate an order of magnitude improvement in scattering loss compared to PbP gratings, to a level comparable with that of phase-mask-based fs inscription. A first-order grating was inscribed in standard telecommunications fiber with -49 dB transmission at the Bragg wavelength and 0.1 dB broadband scattering loss. Potential application of these gratings to large-mode-area fibers and chirped grating fabrication are highlighted.

16.
Opt Express ; 21(9): 10467-74, 2013 May 06.
Article in English | MEDLINE | ID: mdl-23669903

ABSTRACT

We demonstrate and characterize a highly linearly polarized (18.8 dB) narrow spectral emission (<80 pm) from an all-fiber Tm laser utilizing femtosecond-laser-written fiber Bragg gratings. Thermally-dependent anisotropic birefringence is observed in the FBG transmission, the effects of which enable both the generation and elimination of highly linearly polarized output. To our knowledge, this is the first detailed study of such thermal anisotropic birefringence in femtosecond-written FBGs.


Subject(s)
Fiber Optic Technology/instrumentation , Lasers , Molecular Imprinting/instrumentation , Refractometry/instrumentation , Thulium/chemistry , Equipment Design , Equipment Failure Analysis
17.
Opt Express ; 20(19): 21434-49, 2012 Sep 10.
Article in English | MEDLINE | ID: mdl-23037265

ABSTRACT

Highly localized fiber Bragg gratings can be inscribed point-by-point with focused ultrashort pulses. The transverse localization of the resonant grating causes strong coupling to cladding modes of high azimuthal and radial order. In this paper, we show how the reflected cladding modes can be fully analyzed, taking their vectorial nature, orientation and degeneracies into account. The observed modes' polarization and intensity distributions are directly tied to the dispersive properties and show abrupt transitions in nature, strongly correlated with changes in the coupling strengths.

SELECTION OF CITATIONS
SEARCH DETAIL
...