Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nat Commun ; 7: 11652, 2016 05 23.
Article in English | MEDLINE | ID: mdl-27212390

ABSTRACT

New capabilities at X-ray free-electron laser facilities allow the generation of two-colour femtosecond X-ray pulses, opening the possibility of performing ultrafast studies of X-ray-induced phenomena. Particularly, the experimental realization of hetero-site-specific X-ray-pump/X-ray-probe spectroscopy is of special interest, in which an X-ray pump pulse is absorbed at one site within a molecule and an X-ray probe pulse follows the X-ray-induced dynamics at another site within the same molecule. Here we show experimental evidence of a hetero-site pump-probe signal. By using two-colour 10-fs X-ray pulses, we are able to observe the femtosecond time dependence for the formation of F ions during the fragmentation of XeF2 molecules following X-ray absorption at the Xe site.

2.
Phys Rev Lett ; 107(23): 233001, 2011 Dec 02.
Article in English | MEDLINE | ID: mdl-22182083

ABSTRACT

We show that high fluence, high-intensity x-ray pulses from the world's first hard x-ray free-electron laser produce nonlinear phenomena that differ dramatically from the linear x-ray-matter interaction processes that are encountered at synchrotron x-ray sources. We use intense x-ray pulses of sub-10-fs duration to first reveal and subsequently drive the 1s↔2p resonance in singly ionized neon. This photon-driven cycling of an inner-shell electron modifies the Auger decay process, as evidenced by line shape modification. Our work demonstrates the propensity of high-fluence, femtosecond x-ray pulses to alter the target within a single pulse, i.e., to unveil hidden resonances, by cracking open inner shells energetically inaccessible via single-photon absorption, and to consequently trigger damaging electron cascades at unexpectedly low photon energies.

3.
Phys Rev Lett ; 106(8): 083002, 2011 Feb 25.
Article in English | MEDLINE | ID: mdl-21405568

ABSTRACT

The nonlinear absorption mechanisms of neon atoms to intense, femtosecond kilovolt x rays are investigated. The production of Ne(9+) is observed at x-ray frequencies below the Ne(8+), 1s(2) absorption edge and demonstrates a clear quadratic dependence on fluence. Theoretical analysis shows that the production is a combination of the two-photon ionization of Ne(8+) ground state and a high-order sequential process involving single-photon production and ionization of transient excited states on a time scale faster than the Auger decay. We find that the nonlinear direct two-photon ionization cross section is orders of magnitude higher than expected from previous calculations.

4.
Nature ; 466(7302): 56-61, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20596013

ABSTRACT

An era of exploring the interactions of high-intensity, hard X-rays with matter has begun with the start-up of a hard-X-ray free-electron laser, the Linac Coherent Light Source (LCLS). Understanding how electrons in matter respond to ultra-intense X-ray radiation is essential for all applications. Here we reveal the nature of the electronic response in a free atom to unprecedented high-intensity, short-wavelength, high-fluence radiation (respectively 10(18) W cm(-2), 1.5-0.6 nm, approximately 10(5) X-ray photons per A(2)). At this fluence, the neon target inevitably changes during the course of a single femtosecond-duration X-ray pulse-by sequentially ejecting electrons-to produce fully-stripped neon through absorption of six photons. Rapid photoejection of inner-shell electrons produces 'hollow' atoms and an intensity-induced X-ray transparency. Such transparency, due to the presence of inner-shell vacancies, can be induced in all atomic, molecular and condensed matter systems at high intensity. Quantitative comparison with theory allows us to extract LCLS fluence and pulse duration. Our successful modelling of X-ray/atom interactions using a straightforward rate equation approach augurs favourably for extension to complex systems.

5.
Phys Rev Lett ; 97(10): 103006, 2006 Sep 08.
Article in English | MEDLINE | ID: mdl-17025814

ABSTRACT

Observations are reported for the first time of significant nondipole effects in the photoionization of the outer-valence orbitals of diatomic molecules. Measured nondipole angular-distribution parameters for the 3sigma(g), 1pi(u), and 2sigma(u) shells of N2 exhibit spectral variations with incident photon energies from thresholds to approximately 200 eV which are attributed via concomitant calculations to particular final-state symmetry waves arising from (E1)multiply sign in circle(M1,E2) radiation-matter interactions first-order in photon momentum. Comparisons with previously reported K-edge studies in N2 verify linear scaling with photon momentum, accounting in part for the significantly enhanced nondipole behavior observed in inner-shell ionization at correspondingly higher momentum values in this molecule.

6.
Phys Rev Lett ; 97(8): 083601, 2006 Aug 25.
Article in English | MEDLINE | ID: mdl-17026302

ABSTRACT

We have developed a synchrotron-based, time-resolved x-ray microprobe to investigate optical strong-field processes at intermediate intensities (10(14) - 10(15) W/cm2). This quantum-state specific probe has enabled the direct observation of orbital alignment in the residual ion produced by strong-field ionization of krypton atoms via resonant, polarized x-ray absorption. We found strong alignment to persist for a period long compared to the spin-orbit coupling time scale (6.2 fs). The observed degree of alignment can be explained by models that incorporate spin-orbit coupling. The methodology is applicable to a wide range of problems.

7.
Phys Rev Lett ; 91(5): 053002, 2003 Aug 01.
Article in English | MEDLINE | ID: mdl-12906593

ABSTRACT

The Xe 5s nondipole photoelectron parameter gamma is obtained experimentally and theoretically from threshold to approximately 200 eV photon energy. Significant nondipole effects are seen even in the threshold region of this valence shell photoionization. In addition, contrary to previous understanding, clear evidence of interchannel coupling among quadrupole photoionization channels is found.

8.
Phys Rev Lett ; 88(20): 203002, 2002 May 20.
Article in English | MEDLINE | ID: mdl-12005562

ABSTRACT

We have observed photoexcitation of the dipole-forbidden 1s(2) 1S0-->2p(2) 1D2 resonance in helium by measuring the nondipolar forward-backward asymmetry of photoelectron angular distributions in the 2l2l(') autoionizing region. By exploiting the electric dipole-quadrupole interference in the excitation of both the 2s2p 1P1 and 2p(2) 1D2 levels, we have observed the quadrupole resonance in photoabsorption and extracted its Fano line shape parameters and the relative phase of the 1sEp and 1sEd continua. We find the quadrupole line profile index q(2) to be markedly different from theoretical expectations.

11.
Phys Rev Lett ; 75(26): 4736-4739, 1995 Dec 25.
Article in English | MEDLINE | ID: mdl-10059984
12.
Phys Rev Lett ; 70(20): 3008-3011, 1993 May 17.
Article in English | MEDLINE | ID: mdl-10053752
SELECTION OF CITATIONS
SEARCH DETAIL
...