Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (184)2022 06 24.
Article in English | MEDLINE | ID: mdl-35815967

ABSTRACT

Ligands like amines are used in the colloidal synthesis approach to protect platinum nanoparticles (Pt NP's) from agglomeration. Normally, ligands like amines are removed by diverse pre-treatment procedures before use in heterogeneous catalysis as amines are considered as a catalyst poison. However, a possible beneficial influence of these surface modifiers on hydrogenation reactions, which is known from spectator species on metal surfaces, is often neglected. Therefore, amine-stabilized Pt nanoparticles supported by titania (P25) were used without any pre-treatment in order to elucidate a possible influence of the ligand in liquid phase hydrogenation reactions. The catalytic activity of amine-stabilized Pt nanoparticles of two different sizes was investigated in a double-walled stirring tank reactor at 69 °C to 130 °C and 1 atm hydrogen pressure. The conversion of cyclohexene to cyclohexane was determined by gas chromatography (GC) and was compared to ligand-free Pt particles. All catalysts were checked before and after reaction by transmission electron spectroscopy (TEM) and X-ray photoelectron spectroscopy (XPS) for possible changes in size, shape, and ligand shell. The hydrogenation of cyclohexene in liquid phase revealed a higher conversion for amine-stabilized Pt nanoparticles on titania than the ligand-free particles. The hydrogenation of 5-methylfurfural (5-MF) was chosen for a further test reaction, since the hydrogenation of α, ß-unsaturated aldehydes is more complex and exhibits various reaction paths. However, XPS and infrared spectroscopy (IR) proved that 5-MF acts as catalyst poison at the given reaction conditions.


Subject(s)
Metal Nanoparticles , Poisons , Aldehydes/chemistry , Alkenes , Amines , Catalysis , Cyclohexenes , Hydrogenation , Metal Nanoparticles/chemistry , Platinum/chemistry , Titanium
2.
Phys Chem Chem Phys ; 23(21): 12148-12157, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34018509

ABSTRACT

The photochemical conversion of organic compounds on tailored transition metal oxide surfaces by UV irradiation has found wide applications ranging from the production of chemicals to the degradation of organic pollutants e.g. in waste water treatment. Here, we present a systematic surface science-based study of the UV photoconversion of methanol on a rutile TiO2(110) surface. Under the used conditions, the dominant photoreaction is the photo-oxidation forming formaldehyde, that is drastically boosted by the presence of adsorbed oxygen as well as (sub-)surface defects such as oxygen vacancies and Ti3+ interstitials. Moreover, a photostimulated and Ti3+ mediated C-C coupling was observed leading to the production of ethene. We have further deposited tungsten oxide clusters on the rutile surface and examined the impact on the methanol photochemistry. In this case, the C-C coupling can be suppressed. Surprisingly, especially for high Ti3+ contents the population of the photochemical pathway is quenched in favor of the population of the thermal reaction yielding more methane from the deoxygenation reaction. So, the common concept that long time charge separation is efficient by combining two photocatalysts with similar band gaps, but different work functions in order to enhance photochemical yields is apparently too naive for certain systems. We attribute the loss of photoproducts with tungsten oxide coadsorption to the "pinning" of Ti3+ centers and a related enhancement of electron density near the oxide clusters which makes a concomitant recombination of the photochemical relevant holes with the excess surface electrons more likely.

3.
Chemistry ; 21(35): 12389-95, 2015 Aug 24.
Article in English | MEDLINE | ID: mdl-26179376

ABSTRACT

The reaction of Eu2O3 with fuming nitric acid, trifluormethanesulfonic acid, and its anhydride in torch-sealed glass ampoules at 120 °C gave the europium compound (NO)5[Eu(O3SCF3)8] (orthorhombic, Fddd, Z = 16, a = 1932.69(4), b = 2878.44(7), c = 2955.12(7) pm, V = 16439.7(7) Å(3)). The compound exhibits the [Eu(O3SCF3)8](5-) anion showing for the first time a lanthanide ion that is exclusively coordinated by eight triflate anions. The anion has been further investigated by DFT calculations, which also allowed clear assignment of the vibrational spectra. Moreover, magnetochemical and luminescence measurements gave additional insight into the properties of this complex. The luminescence spectra revealed that the Eu(3+) ions are in a pseudo D4d symmetric environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...