Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Nat Chem ; 15(5): 705-713, 2023 May.
Article in English | MEDLINE | ID: mdl-37024716

ABSTRACT

The conversion of carbon dioxide to value-added products using renewable electricity would potentially help to address current climate concerns. The electrochemical reduction of carbon dioxide to propylene, a critical feedstock, requires multiple C-C coupling steps with the transfer of 18 electrons per propylene molecule, and hence is kinetically sluggish. Here we present the electrosynthesis of propylene from carbon dioxide on copper nanocrystals with a peak geometric current density of -5.5 mA cm-2. The metallic copper nanocrystals formed from CuCl precursor present preponderant Cu(100) and Cu(111) facets, likely to favour the adsorption of key *C1 and *C2 intermediates. Strikingly, the production rate of propylene drops substantially when carbon monoxide is used as the reactant. From the electrochemical reduction of isotope-labelled carbon dioxide mixed with carbon monoxide, we infer that the key step for propylene formation is probably the coupling between adsorbed/molecular carbon dioxide or carboxyl with the *C2 intermediates that are involved in the ethylene pathway.

2.
Angew Chem Int Ed Engl ; 62(18): e202301297, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-36855938

ABSTRACT

Supported vanadia (VOx ) is a versatile catalyst for various redox processes where ceria-supported VOx have shown to be particularly active in the oxidative dehydrogenation (ODH) of alcohols. In this work, we clarify the origin of the volcano-shaped ethanol ODH activity trend for VOx /CeOx catalysts using operando quick V K- and Ce L3 - edge XAS experiments performed under transient conditions. We quantitatively demonstrate that both vanadium and cerium are synergistically involved in alcohol ODH. The concentration of reversible Ce4+ /Ce3+ species was identified as the main descriptor of the alcohol ODH activity. The activity drop in the volcano plot, observed at above ca. 3 V nm-2 surface loading (ca. 30 % of VOx monolayer coverage), is related to the formation of spectator V4+ and Ce3+ species, which were identified here for the first time. These results might prove to be helpful for the rational optimization of VOx /CeO2 catalysts and the refinement of the theoretical models.

3.
Phys Chem Chem Phys ; 24(36): 21916-21926, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36069029

ABSTRACT

In situ X-ray absorption spectroscopy (XAS) is a powerful technique for the investigation of heterogeneous catalysts and electrocatalysts. The obtained XAS spectra are usually interpreted from the point of view of the investigated chemical processes, thereby sometimes omitting the fact that intense X-ray irradiation may induce additional transformations in metal speciation and, thus, in the corresponding XAS spectra. In this work, we report on X-ray induced photochemical reduction of vanadium in supported vanadia (VOx) catalysts under reaction conditions, detected at a synchrotron beamline. While this process was not observed in an inert atmosphere and in the presence of water vapor, it occurred at room temperature in the presence of a reducing agent (ethanol or hydrogen) alone or mixed with oxygen. Temperature programmed experiments have shown that X-ray induced reduction of VOx species appeared very clear at 30-100 °C but was not detected at higher temperatures, where the thermocatalytic ethanol oxidative hydrogenation (ODH) takes place. Similar to other studies on X-ray induced effects, we suggest approaches, which can help to mitigate vanadium photoreduction, including defocusing of the X-ray beam and attenuation of the X-ray beam intensity by filters. To recognize beam damage under in situ/operando conditions, we suggest performing X-ray beam switching (on and off) tests at different beam intensities under in situ conditions.

4.
Chem Commun (Camb) ; 58(46): 6610-6613, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35583379

ABSTRACT

The effect of water on the NH3-assisted selective catalytic reduction of NOx (NH3-SCR) has been largely neglected, despite the inevitable presence of water vapor in real emissions produced by fuel combustion. In this work, we investigated the role of water in the behavior of active Cu2+ ions in Cu-SSZ-13 in the NH3-SCR reaction. The addition of water to the reactant feed leads to significantly increased NOx reduction over the catalyst. By combining in situ DRIFTS and XANES analyses during the NH3-SCR reaction, we found that the redox cycle of Cu ions is promoted by the presence of water.

5.
JACS Au ; 2(3): 762-776, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35388376

ABSTRACT

Titania-supported vanadia (VO x /TiO2) catalysts exhibit outstanding catalytic in a number of selective oxidation and reduction processes. In spite of numerous investigations, the nature of redox transformations of vanadium and titanium involved in various catalytic processes remains difficult to detect and correlate to the rate of products formation. In this work, we studied the redox dynamics of active sites in a bilayered 5% V2O5/15% TiO2/SiO2 catalyst (consisting of submonolayer VO x species anchored onto a TiO x monolayer, which in turn is supported on SiO2) during the oxidative dehydrogenation of ethanol. The VO x species in 5% V2O5/15% TiO2/SiO2 show high selectivity to acetaldehyde and an ca. 40 times higher acetaldehyde formation rate in comparison to VO x species supported on SiO2 with a similar density. Operando time-resolved V and Ti K-edge X-ray absorption near-edge spectroscopy, coupled with a transient experimental strategy, quantitatively showed that the formation of acetaldehyde over 5% V2O5/15% TiO2/SiO2 is kinetically coupled to the formation of a V4+ intermediate, while the formation of V3+ is delayed and 10-70 times slower. The low-coordinated nature of various redox states of VO x species (V5+, V4+, and V3+) in the 5% V2O5/15% TiO2/SiO2 catalyst is confirmed using the extensive database of V K-edge XANES spectra of standards and specially synthesized molecular crystals. Much weaker redox activity of the Ti4+/Ti3+ couple was also detected; however, it was found to not be kinetically coupled to the rate-determining step of ethanol oxidation. Thus, the promoter effect of TiO x is rather complex. TiO x species might be involved in a fast electron transport between VO x species and might affect the electronic structure of VO x , thereby promoting their reducibility. This study demonstrates the high potential of element-specific operando X-ray absorption spectroscopy for uncovering complex catalytic mechanisms involving the redox kinetics of various metal oxides.

6.
Phys Chem Chem Phys ; 24(7): 4555-4561, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35129188

ABSTRACT

Lewis acid sites (LAS) and Brønsted-Lowry acid sites (BAS) play key roles in many catalytic processes, particularly in the selective catalytic reduction (SCR) of nitrogen oxides with ammonia. Here we show that temperature, gas feed, and catalyst composition affect the interplay between LAS and BAS on vanadia-based materials under SCR-relevant conditions. While different LAS typically manifest as a single collective peak in the steady-state spectra, their individual signals could be isolated through the increased sensitivity of transient experimentation. Furthermore, water could increase BAS not just by converting pre-existing LAS, but also by generating spontaneously new acid sites. These results pave the way for understanding the relationship between LAS and BAS, and how their ratio determines the reactivity of vanadia-based catalysts not just in SCR but in other chemical transformations as well.

7.
Catal Sci Technol ; 11(22): 7431-7444, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34912538

ABSTRACT

Active phase loss mechanisms from Ru/AC catalysts were studied in continuous supercritical water gasification (SCWG) for the first time by analysing the Ru content in process water with low limit-of-detection time-resolved ICP-MS. Ru loss was investigated alongside the activity of commercial and in-house Ru-based catalysts, showing very low Ru loss rates compared to Ru/metal-oxides (0.2-1.2 vs. 10-24 µg gRu -1 h-1, respectively). Furthermore, AC-supported Ru catalysts showed superior long-term SCWG activity to their oxide-based analogues. The impact on Ru loss of several parameters relevant for catalytic SCWG (temperature, feed concentration or feed rate) was also studied and was shown to have no effect on the Ru concentration in the process water, as it systematically stabilised to 0.01-0.2 µgRu L-1 for Ru/AC. Looking into the type of Ru loss in steady-state operation, time-resolved ICP-MS confirmed a high probability of finding Ru in the ionic form, suggesting that leaching is the main steady-state Ru loss mechanism. In non-steady-state operation, abrupt changes in the pressure and flow rate induced important Ru losses, which were assigned to catalyst fragments. This is directly linked to irreversible mechanical damage to the catalyst. Taking the different observations into consideration, the following Ru loss mechanisms are suggested: 1) constant Ru dissolution (leaching) until solubility equilibrium is reached; 2) minor nanoparticle uncoupling from the support (both at steady state); 3) support disintegration leading to the loss of larger amounts of Ru in the form of catalyst fragments (abrupt feed rate or pressure variations). The very low Ru concentrations detected in process water at steady state (0.01-0.2 µgRu L-1) are close to the thermodynamic equilibrium and indicated that leaching did not contribute to Ru/AC deactivation in SCWG.

8.
N Biotechnol ; 65: 53-60, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34343714

ABSTRACT

Lignocellulose-based biofuels are of major importance to mitigate the impact of international traffic and transport on climate change while sustaining agricultural land for food supply. Highly integrated systems like consolidated bioprocessing (CBP), where enzyme production, enzymatic hydrolysis and fermentation of the released sugars are carried out in one reactor, offer the highest potential to save costs and to make lignocellulose-based biofuels economically competitive. The work described here showed that CBP based on a microbial consortium operated at full-scale (2000 t/d) saves up to 27.5 % of the total ethanol production costs compared to conventional ethanol production from lignocellulose in individual process steps. The cost savings are mainly achieved through lower CAPEX due to less apparatus requirements because of the integrated process, as well as through lower OPEX since no glucose is needed for enzyme production. A comparison with literature estimations of cost savings of CBP based on genetically modified microorganisms results in approximately the same range. As a result of a detailed sensitivity analysis, scale and yield were identified as the main cost-pushers from a process point of view, whereas the price level of the plant location has the highest impact on the investment conditions. In the EU, CBP yields enough margin for profitable production and the possibility to decentralize biomass valorization, whereas in the world's largest ethanol market, the U.S, profitable production of lignocellulosic ethanol can only be achieved by CBP combined with other cost saving techniques, such as utilization of cost-free waste feedstocks, since ethanol has undergone a considerable price slump.


Subject(s)
Biofuels , Industrial Microbiology , Lignin , Microbial Consortia , Biofuels/economics , Ethanol , Fermentation , Industrial Microbiology/economics , Lignin/metabolism
9.
Chem Commun (Camb) ; 57(9): 1153-1156, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33411862

ABSTRACT

Cu-Al spinel oxide is a highly active catalyst for CO2 conversion to CO. However, it suffers from low surface area. By depositing a silica layer, we protected the catalyst surface and preserved the Cu2+ ions during the calcination process. These ions form well-dispersed Cu sites which participate in the reaction.

10.
Chem Sci ; 11(2): 447-455, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-32190265

ABSTRACT

The small pore zeolite Cu-SSZ-13 is an efficient material for the standard selective catalytic reduction of nitrogen oxides (NO x ) by ammonia (NH3). In this work, Cu-SSZ-13 has been studied at 250 °C under high conversion using a modulation excitation approach and analysed with phase sensitive detection (PSD). While the complementary X-ray absorption near edge structure (XANES) spectroscopy measurements showed that the experiments were performed under cyclic Cu+/Cu2+ redox, Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) experiments provide spectroscopic evidence for previously postulated intermediates Cu-N([double bond, length as m-dash]O)-NH2 and Cu-NO3 in the NH3-SCR deNO x mechanism and for the role of [Cu2+(OH-)]+. These results therefore help in building towards a more comprehensive understanding of the reaction mechanism which to date has only been postulated in silico.

11.
RSC Adv ; 10(19): 11507-11516, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-35495338

ABSTRACT

Supported ruthenium was used in the liquid phase catalytic transfer hydrogenation of furfural. To improve the stability of Ru against leaching, phosphorous was introduced on a Ru/Al2O3 based catalyst upon impregnation with ammonium hypophosphite followed by either reduction or calcination to study the effect of phosphorous on the physico-chemical properties of the active phase. Characterization using X-ray diffraction, solid state 31P nuclear magnetic resonance spectroscopy, X-ray absorption spectroscopy, temperature programmed reduction with H2, infrared spectroscopy of pyridine adsorption from the liquid phase and transmission electron microscopy indicated that phosphorous induces a high dispersion of Ru, promotes Ru reducibility and is responsible for the formation of acid species of Brønsted character. As a result, the phosphorous-based catalyst obtained after reduction was more active for catalytic transfer hydrogenation of furfural and more stable against Ru leaching under these conditions than a benchmark Ru catalyst supported on activated carbon.

12.
ChemSusChem ; 12(19): 4421-4431, 2019 Oct 08.
Article in English | MEDLINE | ID: mdl-31424172

ABSTRACT

The role of Lewis and Brønsted acid sites and their potential synergy remains ambiguous for the production of polyoxymethylene dimethyl ethers (OME), which are suitable as a Diesel substitute. Here, this synergistic effect was investigated by using a series of beta polymorph A (BEA) zeolites with various degrees of Brønsted and Lewis acidity. Lewis acidity was introduced in dealuminated zeolites by Sn grafting in dichloromethane. These sites were only active in paraformaldehyde decomposition, OME growth, and acetalization. The Brønsted acid sites arising from bridging hydroxyl groups were active for all reaction steps, and notably for trioxane ring-opening and dissociation to formaldehyde (FA), which did not occur on the Lewis acid sites. Presence of both Lewis and Brønsted acid sites led to a four-fold increase in turnover frequency and a significant decrease of byproduct formation compared with the parent zeolite during OME synthesis from dimethoxymethane and trioxane. The synergistic effect between both types of acid sites is explained by FA insertion on Lewis acid sites leading to OME growth. Interaction between tetrahedral Sn and the carbonyl group of FA resulted in an activated carbonyl bond, which was likely the initial step for insertion of FA into OME.

13.
RSC Adv ; 9(57): 33525-33538, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-35529150

ABSTRACT

The hydrolysis of lignocellulose is the first step in saccharide based bio-refining. The recovery of homogeneous acid catalysts imposes great challenges to the feasibility of conventional hydrolysis processes. Herein, we report a strategy to overcome these limitations by using stable sulfonated carbons as solid acid catalysts in a two-step process, composed of mechanocatalytic pretreatment and secondary hydrolysis in a semi-batch reactor. Without mechanocatalytic pre-treatment the hydrolysis of the insoluble substrate largely occurs through homogeneously catalyzed reactions. Ball-milling induced amorphization promotes a substantially higher substrate reactivity, because homogeneous hydrolysis occurs preferentially from less ordered structural domains in cellulose. In contrast, concerted ball-milling (CBM) of cellulose with the sulfonated carbon promotes a heterogeneously catalyzed hydrolysis to soluble oligosaccharides. By performing an in-depth physicochemical characterization of cellulose subjected to CBM treatment with different carbons, we reveal the crucial role of strong Brønsted acid sites in facilitating mechanocatalytic depolymerization. Recyclability experiments confirmed that despite being subject to profound structural changes during repeated pre-treatment/semi-batch hydrolysis cycles, the sulfonated carbon retained its catalytic activity. The combination of mechanocatalytic pretreatment with strong solid acids and hydrolysis in the semi-batch reactor was successfully extrapolated for the first time to the hydrolysis of real lignocellulose to achieve quantitative yields in C5 and high yields in C6 derived products.

14.
Environ Sci Technol ; 52(22): 13381-13390, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30351026

ABSTRACT

Log wood burning is a significant source of volatile organic compounds including aromatic hydrocarbons (ArHC). ArHC are harmful, are reactive in the ambient atmosphere, and are important secondary organic aerosol (SOA) precursors. Consequently, SOA represents a major fraction of the sub-micron organic aerosol pollution from log wood burning. ArHC reduction is thus critical in the mitigation of adverse health and environmental effects of log wood burning. In this study, two Pt-based catalytic converters were prepared and tested for the mitigation of real-world log wood burning emissions, including ArHC and SOA formation, as well as toxic carbon monoxide and methane, a greenhouse gas. Substantial removal of mono- and polycyclic ArHC and phenolic compounds was achieved with both catalysts operated at realistic chimney temperatures (50% conversion was achieved at 200 and 300 °C for non-methane hydrocarbons in our experiments for Pt/Al2O3 and Pt/CeO2-Al2O3, respectively). The catalytically cleaned emissions exhibited a substantially reduced SOA formation already at temperatures as low as 185-310 °C. This reduces the sub-micron PM burden of log wood burning significantly. Thus, catalytic converters can effectively reduce primary and secondary log wood burning pollutants and, thereby, their adverse health impacts and environmental effects.


Subject(s)
Air Pollutants , Hydrocarbons, Aromatic , Aerosols , Particulate Matter , Wood
15.
Nat Commun ; 9(1): 2545, 2018 06 29.
Article in English | MEDLINE | ID: mdl-29959324

ABSTRACT

Increasing the use of natural gas engines is an important step to reduce the carbon footprint of mobility and power generation sectors. To avoid emissions of unburnt methane and the associated severe greenhouse effect of lean-burn engines, the stability of methane oxidation catalysts against steam-induced sintering at low temperatures (<500 °C) needs to be improved. Here we demonstrate how the combination of catalyst development and improved process control yields a highly efficient solution for complete methane oxidation. We design a material based on palladium and hierarchical zeolite with fully sodium-exchanged acid sites, which improves the support stability and prevents steam-induced palladium sintering under reaction conditions by confining the metal within the zeolite. Repeated short reducing pulses enable the use of a highly active transient state of the catalyst, which in combination with its high stability provides excellent performance without deactivation for over 90 h in the presence of steam.

16.
ChemSusChem ; 11(13): 2189-2201, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29733550

ABSTRACT

The deactivation pathways of sulfonated carbon catalysts prepared from different carbons were studied during the aqueous-phase hydrolysis of cellobiose under continuous-flow conditions. The sulfonation of carbon materials with a low degree of graphitization introduced sulfonic acid groups that are partially stable even during prolonged exposure to harsh hydrothermal treatment conditions (180 °C). The physicochemical characterization of hydrothermally treated materials coupled with the treatment of model compounds for sulfonic acids demonstrated that the stability is related to the presence of activating and deactivating substituents on the aromatic system. Besides sulfonic acid group leaching, a hitherto unknown mode of deactivation was identified that proceeds by the ion exchange of cations contained in the aqueous feed and protons of the sulfonic acid groups. Proton leaching is a fully reversible mode of deactivation by the treatment of the spent catalysts with strong Brønsted acids. Through a combined approach of physicochemical characterization, catalytic testing, and hydrothermal treatment, a methodology for the preparation of catalytically stable carbon materials that bear sulfonic acid groups was established.

17.
Chem Ing Tech ; 90(6): 795-802, 2018 Jun.
Article in English | MEDLINE | ID: mdl-31543520

ABSTRACT

In marine diesel engine applications, selective catalytic reduction (SCR) upstream of the turbocharger may become the preferred technology when dealing with high sulfur fuels and low exhaust gas temperatures. The target nitrogen oxide reductions in combination with minimum ammonia slip and reduced gas diffusion rates under elevated pressures require understanding of the impact of catalyst geometry on the SCR kinetics. The extent, trends, and sources for this observation are elucidated in this work by systematic testing of catalysts with equal geometry and/or intrinsic activity.

18.
Anal Chem ; 89(11): 5801-5809, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28452471

ABSTRACT

The combination of spectroscopic and diffraction methods to study chemical transformations is fundamental for the understanding of reaction mechanisms. The identification of short-lived species, likely active species, is often hindered by the contribution of spectator species not directly involved in the reaction. The present study considers two different approaches to obtain increased sensitivity to transient species for experiments obeying the modulated excitation paradigm and exploiting phase sensitive detection (PSD). First, the variation of the frequency of the external stimulation (ω) during the experiment is considered. We demonstrate using the Fourier analysis that the increase of ω, i.e., the decrease of the modulation period T, enhances the sensitivity to short-lived species. The second alternative is the use of a single stimulation frequency (ω) during the measurement and the variation of the demodulation frequency (nω) during data analysis. The absolute intensity of the phase-resolved signals is reduced by increasing n. However, species with slow kinetics are more attenuated than species with fast kinetics. Thus, transient species possessing fast kinetics are enhanced relative to other components and can be, in principle, discerned with improved sensitivity in the phase-resolved data obtained with n > 1. Experimental results in the field of heterogeneous catalysis are provided that support our findings.

19.
ChemSusChem ; 10(11): 2505-2517, 2017 06 09.
Article in English | MEDLINE | ID: mdl-28338286

ABSTRACT

Perovskite-type oxides have shown the ability to reversibly segregate precious metals from their structure. This reversible segregation behavior was explored for a commonly used catalyst metal, Ni, to prevent Ni sintering, which is observed on most catalyst support materials. Temperature-programmed reduction, X-ray diffraction, X-ray absorption spectroscopy, electron microscopy, and catalytic activity tests were used to follow the extent of reversible Ni segregation. LaFe1-x Nix O3±Î´ (0≤x≤0.2) was synthesized using a citrate-based solution process. After reduction at 600 °C, metallic Ni particles were displayed on the perovskite surfaces, which were active towards the hydrogenation of CO2 . The overall Ni reducibility was proportional to the Ni content and increased from 35 % for x=0.05 to 50 % for x=0.2. Furthermore, Ni could be reincorporated reversibly into the perovskite lattice during reoxidation at 650 °C. This could be exploited for catalyst regeneration under conditions under which impregnated materials such as Ni/LaFeO3±Î´ and Ni/Al2 O3 suffer from sintering.


Subject(s)
Catalysis , Iron/chemistry , Lanthanum/chemistry , Nickel/chemistry , Calcium Compounds , Hydrogenation , Oxidation-Reduction , Oxides/chemistry , Titanium
20.
Phys Chem Chem Phys ; 18(42): 29268-29277, 2016 Oct 26.
Article in English | MEDLINE | ID: mdl-27731446

ABSTRACT

In situ time-resolved spectroscopic examination of catalysts based on well dispersed nanoparticles on metal oxides under transient conditions significantly facilitates the elucidation of reaction mechanisms. In this contribution, we demonstrate the level of structural information that can be obtained using high-energy resolution off-resonant spectroscopy (HEROS) to study 1.3 wt% Pt/Al2O3 and 1.3 wt% Pt/20 wt% CeO2/Al2O3 catalysts subjected to redox pulsing. First, HEROS is compared with XANES in a temperature programmed reduction experiment to demonstrate the increased sensitivity and time resolution of HEROS. Second, modulation excitation spectroscopy is exploited by redox pulsing to enhance the sensitivity of HEROS to structural changes by the application of phase sensitive detection (PSD) to the time-resolved HEROS data set. The HEROS measurements were complemented by resonant X-ray emission (RXES) and diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy measurements performed under identical conditions and in a single reactor cell in order to probe different aspects of the catalyst materials under the selected experimental conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...