Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Theory Comput ; 16(10): 6267-6279, 2020 Oct 13.
Article in English | MEDLINE | ID: mdl-32886502

ABSTRACT

Understanding charge transport through molecular wires is important for nanoscale electronics and biochemistry. Our goal is to establish a simple first-principles protocol for predicting the charge transport mechanism in such wires, in particular the crossover from coherent tunneling for short wires to incoherent hopping for longer wires. This protocol is based on a combination of density functional theory with a polarizable continuum model introduced by Kaupp et al. for mixed-valence molecules, which we had previously found to work well for length-dependent charge delocalization in such systems. We combine this protocol with a new charge delocalization measure tailored for molecular wires, and we show that it can predict the tunneling-to-hopping transition length with a maximum error of one subunit in five sets of molecular wires studied experimentally in molecular junctions at room temperature. This suggests that the protocol is also well suited for estimating the extent of hopping sites as relevant, for example, for the intermediate tunneling-hopping regime in DNA.


Subject(s)
DNA/chemistry , Density Functional Theory , Thiophenes/chemistry , Molecular Structure , Temperature
2.
J Chem Theory Comput ; 15(1): 165-177, 2019 Jan 08.
Article in English | MEDLINE | ID: mdl-30481452

ABSTRACT

Efficient electronic communication over long distances is a desirable property of molecular wires. Charge delocalization in mixed-valence (MV) compounds where two redox centers are linked by a molecular bridge is a particularly well-controlled instance of such electronic communication, thus lending itself to comparisons between theory and experiment. We study how to achieve and control long-range charge delocalization in cationic organic MV systems by means of Kohn-Sham density functional theory (DFT) and show that a captodative substitution approach recently suggested for molecular conductance ( Stuyver et al. J. Phys. Chem. C 2018 , 122 , 3194 ) greatly enhances charge delocalization in p-phenylene-based wires. To ensure the adequacy of our DFT methods, we validate different protocols for organic MV systems of different lengths. The BLYP35 hybrid functional combined with a polarizable continuum model, established by Renz and Kaupp, is indeed capable of correctly describing experimentally observed length-dependent charge delocalization, in contrast to the long-range corrected functionals ω-B97X-D and ω-PBE. We also discuss the implications of these results for a first-principles description of the transition between coherent tunneling and incoherent hopping regimes in molecular conductance.

SELECTION OF CITATIONS
SEARCH DETAIL
...