Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
J Med Microbiol ; 72(4)2023 Apr.
Article in English | MEDLINE | ID: mdl-37043383

ABSTRACT

Introduction. Acinetobacter baumannii infections can be extremely challenging to treat owing to the worldwide prevalence of multidrug-resistant isolates, especially against carbapenems. Colonization with carbapenem-resistant A. baumannii (CRAb) requires rapid action from an infection control perspective because the organism is known for its propensity for epidemic spread. Hypothesis/Gap Statement. There is an unmet medical need to rapidly identify CRAb to enable appropriate antimicrobial treatment and to prevent transmission. Aim. Our aim was to expand the OXA-detection abilities of the rapid immunochromatographic test (ICT) OXA-23 K-SeT (Coris BioConcept) to include OXA-40- and OXA-58-like carbapenemases, which together confer carbapenem resistance to more than 94 % of CRAb isolates worldwide. Methodology. We used hybridoma technology to generate mAbs against OXA-40 and OXA-58 and selected them for productivity and specificity against recombinant and endogenous OXA-40 and OXA-58. Combinations of the resulting mAbs were analysed in ICT format for their ability to detect recombinant rOXA-40His6 or rOXA-58His6, respectively. Subsequently, selected antibody pairs were implemented into single-OXA-40 or single-OXA-58 prototypes and the final OXA-23/40/58/NDM ICT and were evaluated on clinical Acinetobacter spp. isolates with well-defined carbapenem resistance mechanisms. Results. Five anti-OXA-40 and anti-OXA-58 mAbs were selected. Competition ELISA with combinations of these antibodies revealed that the anti-OXA-40 antibodies bind to one of two binding clusters on OXA-40, while anti-OXA-58 antibodies bind to one of four binding clusters on OXA-58. Direct binding to the corresponding antigen in an ICT format has left only three antibodies against rOXA-40His6 and rOXA-58His6, respectively for the subsequent sandwich ICT selection procedure, which revealed that the anti-OXA-40 (#5) and anti-OXA-58 (#A8) mAbs in combination with the cross-reactive mAb #C8 performed best. They were implemented into single-OXA-40 and single-OXA-58 ICT prototypes and evaluated. These single ICT prototypes demonstrated 100 % specificity and sensitivity. Based on these results, an OXA-23/40/58/NDM-ICT was developed, complemented with OXA-23 and NDM-specific detection. An evaluation with selected carbapenem-resistant Acinetobacter spp. isolates (n=34) showed 100 % specificity. Conclusion. With this easy-to-use detection assay, one can save 12-48 h in diagnostics, which helps to treat patients earlier with appropriate antibiotics and allows immediate intervention to control transmission of CRAb.


Subject(s)
Acinetobacter baumannii , Humans , Microbial Sensitivity Tests , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , beta-Lactamases/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenems/pharmacology , Carbapenems/therapeutic use , Immunoassay/methods
2.
Mucosal Immunol ; 15(5): 977-989, 2022 05.
Article in English | MEDLINE | ID: mdl-35654836

ABSTRACT

The NADPH oxidase DUOX1 contributes to epithelial production of alarmins, including interleukin (IL)-33, in response to injurious triggers such as airborne protease allergens, and mediates development of mucus metaplasia and airway remodeling in chronic allergic airways diseases. DUOX1 is also expressed in non-epithelial lung cell types, including macrophages that play an important role in airway remodeling during chronic lung disease. We therefore conditionally deleted DUOX1 in either lung epithelial or monocyte/macrophage lineages to address its cell-specific actions in innate airway responses to acute airway challenge with house dust mite (HDM) allergen, and in chronic HDM-driven allergic airway inflammation. As expected, acute responses to airway challenge with HDM, as well as type 2 inflammation and related features of airway remodeling during chronic HDM-induced allergic inflammation, were largely driven by DUOX1 with the respiratory epithelium. However, in the context of chronic HDM-driven inflammation, DUOX1 deletion in macrophages also significantly impaired type 2 cytokine production and indices of mucus metaplasia. Further studies revealed a contribution of macrophage-intrinsic DUOX1 in macrophage recruitment upon chronic HDM challenge, as well as features of macrophage activation that impact on type 2 inflammation and remodeling.


Subject(s)
Airway Remodeling , Hypersensitivity , Allergens , Animals , Antigens, Dermatophagoides , Dual Oxidases , Inflammation , Lung , Macrophages , Metaplasia , Mucus , Pyroglyphidae
3.
Front Cell Infect Microbiol ; 12: 834321, 2022.
Article in English | MEDLINE | ID: mdl-35372127

ABSTRACT

Macrophages remove bacteria from the extracellular milieu via phagocytosis. While most of the engulfed bacteria are degraded in the antimicrobial environment of the phagolysosome, several bacterial pathogens have evolved virulence factors, which evade degradation or allow escape into the cytosol. To counter this situation, macrophages activate LC3-associated phagocytosis (LAP), a highly bactericidal non-canonical autophagy pathway, which destroys the bacterial pathogens in so called LAPosomes. Moreover, macrophages can also target intracellular bacteria by pore-forming toxin-induced non-canonical autophagy (PINCA), a recently described non-canonical autophagy pathway, which is activated by phagosomal damage induced by bacteria-derived pore-forming toxins. Similar to LAP, PINCA involves LC3 recruitment to the bacteria-containing phagosome independently of the ULK complex, but in contrast to LAP, this process does not require ROS production by Nox2. As last resort of autophagic targeting, macrophages activate xenophagy, a selective form of macroautophagy, to recapture bacteria, which evaded successful targeting by LAP or PINCA through rupture of the phagosome. However, xenophagy can also be hijacked by bacterial pathogens for their benefit or can be completely inhibited resulting in intracellular growth of the bacterial pathogen. In this perspective, we discuss the molecular differences and similarities between LAP, PINCA and xenophagy in macrophages during bacterial infections.


Subject(s)
Host-Pathogen Interactions , Microtubule-Associated Proteins , Autophagy/physiology , Microtubule-Associated Proteins/metabolism , Phagocytosis/physiology , Phagosomes/microbiology
4.
Autophagy ; 18(5): 1090-1107, 2022 05.
Article in English | MEDLINE | ID: mdl-34482812

ABSTRACT

Non-canonical autophagy pathways decorate single-membrane vesicles with Atg8-family proteins such as MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3). Phagosomes containing the bacterial pathogen Listeria monocytogenes (L.m.) can be targeted by a non-canonical autophagy pathway called LC3-associated phagocytosis (LAP), which substantially contributes to the anti-listerial activity of macrophages and immunity. We here characterized a second non-canonical autophagy pathway targeting L.m.-containing phagosomes, which is induced by damage caused to the phagosomal membrane by the pore-forming toxin of L.m., listeriolysin O. This pore-forming toxin-induced non-canonical autophagy pathway (PINCA) was the only autophagic pathway evoked in tissue macrophages deficient for the NADPH oxidase CYBB/NOX2 that produces the reactive oxygen species (ROS) that are required for LAP induction. Similarly, also bone marrow-derived macrophages (BMDM) exclusively targeted L.m. by PINCA as they completely failed to induce LAP because of insufficient production of ROS through CYBB, in part, due to low expression of some CYBB complex subunits. Priming of BMDM with proinflammatory cytokines such as TNF and IFNG/IFNγ increased ROS production by CYBB and endowed them with the ability to target L.m. by LAP. Targeting of L.m. by LAP remained relatively rare, though, preventing LAP from substantially contributing to the anti-listerial activity of BMDM. Similar to LAP, the targeting of L.m.-containing phagosomes by PINCA promoted their fusion with lysosomes. Surprisingly, however, this did not substantially contribute to anti-listerial activity of BMDM. Thus, in contrast to LAP, PINCA does not have clear anti-listerial function suggesting that the two different non-canonical autophagy pathways targeting L.m. may have discrete functions.Abbreviations: actA/ActA: actin assembly-inducing protein A; ATG: autophagy-related; BMDM: Bone marrow-derived macrophages; CALCOCO2/NDP52: calcium-binding and coiled-coil domain-containing protein 2; CYBA/p22phox: cytochrome b-245 light chain; CYBB/NOX2: cytochrome b(558) subunit beta; E. coli: Escherichia coli; IFNG/IFNγ: interferon gamma; L.m.: Listeria monocytogenes; LAP: LC3-associated phagocytosis; LGALS: galectin; LLO: listeriolysin O; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; NCF1/p47phox: neutrophil cytosol factor 1; NCF2/p67phox: neutrophil cytosol factor 2; NCF4/p67phox: neutrophil cytosol factor 4; Peritoneal macrophages: PM; PINCA: pore-forming toxin-induced non-canonical autophagy; plc/PLC: 1-phosphatidylinositol phosphodiesterase; PMA: phorbol 12-myristate 13-acetate; RB1CC1/FIP200: RB1-inducible coiled-coil protein 1; ROS: reactive oxygen species; S. aureus: Staphylococcus aureus; S. flexneri: Shigella flexneri; SQSTM1/p62: sequestosome 1; S. typhimurium: Salmonella typhimurium; T3SS: type III secretion system; TNF: tumor necrosis factor; ULK: unc-51 like autophagy activating kinase; PM: peritoneal macrophages; WT: wild type.


Subject(s)
Autophagy , Listeria monocytogenes , Autophagy/physiology , Escherichia coli/metabolism , Listeria monocytogenes/metabolism , Macrophages/metabolism , Microtubule-Associated Proteins/metabolism , Reactive Oxygen Species/metabolism , Staphylococcus aureus
5.
Front Immunol ; 12: 633629, 2021.
Article in English | MEDLINE | ID: mdl-33868252

ABSTRACT

Although the crucial role of professional phagocytes for the clearance of S. aureus infections is well-established, several studies indicate an adverse role of leukocytes in the dissemination of S. aureus during infection. Since only little is known about macrophages in this context, we analyzed the role of macrophages, and in particular reactive oxygen species deficiency, for the seeding of S. aureus metastases. Infection of bone marrow-derived macrophages (BMDM) with S. aureus revealed that NADPH oxidase 2 (NOX2-) deficient, but not NOX1- or NOX4-deficient, BMDM failed to clear intracellular S. aureus. Despite of larger intracellular bacterial burden, NOX2-deficient BMDM showed significantly improved survival. Intravenous injection of mice with in vitro-infected BMDMs carrying intracellular viable S. aureus led to higher bacterial loads in kidney and liver of mice compared to injection with plain S. aureus. An even higher frequency of liver abscesses was observed in mice infected with S. aureus-loaded nox2-/- BMDM. Thus, the improved intracellular survival of S. aureus and improved viability of NOX2-deficient BMDM is associated with an aggravated metastatic dissemination of S. aureus infection. A combination of vancomycin and the intracellularly active antibiotic rifampicin led to complete elimination of S. aureus from liver within 48 h, which was not achieved with vancomycin treatment alone, underscoring the impact of intracellular S. aureus on the course of disease. The results of our study indicate that intracellular S. aureus carried by macrophages are sufficient to establish a systemic infection. This suggests the inclusion of intracellularly active antibiotics in the therapeutic regimen of invasive S. aureus infections, especially in patients with NADPH oxidase deficiencies such as chronic granulomatous disease.


Subject(s)
Macrophages/microbiology , Microbial Viability , NADPH Oxidase 2/genetics , Severity of Illness Index , Staphylococcal Infections/microbiology , Staphylococcus aureus/physiology , Animals , Female , Gene Deletion , Mice , Mice, Inbred C57BL , Reactive Oxygen Species/analysis , Staphylococcal Infections/immunology , Staphylococcus aureus/pathogenicity
6.
NPJ Vaccines ; 6(1): 11, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33462229

ABSTRACT

Staphylococcus aureus represents a serious infectious threat to global public health and a vaccine against S. aureus represents an unmet medical need. We here characterise two S. aureus vaccine candidates, coproporphyrinogen III oxidase (CgoX) and triose phosphate isomerase (TPI), which fulfil essential housekeeping functions in heme synthesis and glycolysis, respectively. Immunisation with rCgoX and rTPI elicited protective immunity against S. aureus bacteremia. Two monoclonal antibodies (mAb), CgoX-D3 and TPI-H8, raised against CgoX and TPI, efficiently provided protection against S. aureus infection. MAb-CgoX-D3 recognised a linear epitope spanning 12 amino acids (aa), whereas TPI-H8 recognised a larger discontinuous epitope. The CgoX-D3 epitope conjugated to BSA elicited a strong, protective immune response against S. aureus infection. The CgoX-D3 epitope is highly conserved in clinical S. aureus isolates, indicating its potential wide usability against S. aureus infection. These data suggest that immunofocusing through epitope-based immunisation constitutes a strategy for the development of a S. aureus vaccine with greater efficacy and better safety profile.

7.
Cell Death Dis ; 11(9): 740, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32913203

ABSTRACT

The BH3-only protein NOXA is a regulator of mitochondrial apoptosis by specifically antagonizing the anti-apoptotic protein MCL-1. Here we show that the E3 ubiquitin ligase CHIP controls NOXA stability after DNA damage. Our findings reveal that CHIP and MCL-1 are binding partners of NOXA and differentially define the fate of NOXA. Whereas NOXA is initially targeted to mitochondria upon MCL-1-binding, CHIP mediates ubiquitylation of cytosolic NOXA and promotes lysosomal degradation of NOXA, which is not bound by MCL-1. Our data indicate that MCL-1 defines NOXA abundance and its pro-apoptotic activity. Increased NOXA levels beyond this threshold are effectively removed by lysosomal protein degradation triggered via CHIP-mediated ubiquitylation. Together, these results shed new light on regulatory circuits controlling DNA damage response and identified the E3 ligase CHIP as a new molecular guardian, which restricts the cytosolic accumulation of NOXA upon genotoxic stress.


Subject(s)
DNA Damage/genetics , Lysosomes/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/genetics , Humans
8.
J Immunol ; 205(9): 2456-2467, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32948684

ABSTRACT

Salmonella enterica serovar Typhimurium (S Typhimurium) is a Gram-negative bacterium that induces cell death of macrophages as a key virulence strategy. We have previously demonstrated that the induction of macrophage death is dependent on the host's type I IFN (IFN-I) response. IFN-I signaling has been shown to induce tripartite motif (TRIM) 21, an E3 ubiquitin ligase with critical functions in autoimmune disease and antiviral immunity. However, the importance and regulation of TRIM21 during bacterial infection remains poorly understood. In this study, we investigated the role of TRIM21 upon S Typhimurium infection of murine bone marrow-derived macrophages. Although Trim21 expression was induced in an IFN-I-dependent manner, we found that TRIM21 levels were mainly regulated posttranscriptionally. Following TLR4 activation, TRIM21 was transiently degraded via the lysosomal pathway by chaperone-mediated autophagy (CMA). However, S Typhimurium-induced mTORC2 signaling led to phosphorylation of Akt at S473, which subsequently impaired TRIM21 degradation by attenuating CMA. Elevated TRIM21 levels promoted macrophage death associated with reduced transcription of NF erythroid 2-related factor 2 (NRF2)-dependent antioxidative genes. Collectively, our results identify IFN-I-inducible TRIM21 as a negative regulator of innate immune responses to S Typhimurium and a previously unrecognized substrate of CMA. To our knowledge, this is the first study reporting that a member of the TRIM family is degraded by the lysosomal pathway.


Subject(s)
Chaperone-Mediated Autophagy/immunology , Ribonucleoproteins/immunology , Ribonucleoproteins/metabolism , Salmonella Infections/immunology , Salmonella Infections/metabolism , Salmonella typhimurium/immunology , Animals , Immunity, Innate/immunology , Lysosomes/immunology , Lysosomes/metabolism , Macrophages/immunology , Macrophages/metabolism , Mechanistic Target of Rapamycin Complex 2/immunology , Mechanistic Target of Rapamycin Complex 2/metabolism , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/immunology , NF-E2-Related Factor 2/metabolism , Phosphorylation/immunology , Proto-Oncogene Proteins c-akt/immunology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/immunology
9.
Cancers (Basel) ; 12(7)2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32630271

ABSTRACT

Ceramide synthase 5 is one of six enzymes that catalyze the production of ceramides from sphingosine or sphinganine. Ceramides are important components of cell membranes and act as signaling molecules. Previously it has been shown that ceramide synthase 6 and 2 influence colitis in several animal models with sometimes opposite effects. Here, we investigated the disease course of dextran sodium sulfate-induced acute colitis and azoxymethane/dextran sodium sulfate-induced colitis-associated colon cancer in mice with global ceramide synthase 5 knockout (CerS5-ko) or with ceramide synthase 5 knockout restricted to the colon epithelium (CerS5fl/fl VilCre). We monitored disease development and analyzed colon barrier function as well as the immune cell status in these mice. CerS5-ko mice but not CerS5fl/fl-VilCre mice were more susceptible to acute and chronic inflammation. However, the cell barrier function of colon epithelial cells was not disturbed by downregulation of ceramide synthase 5. Instead, untreated CerS5-ko mice displayed reduced numbers of CD3+ immune cells in the spleen, colon, and blood, especially of intraepithelial CD8+ T-cells, which was not obvious in CerS5fl/fl Vil Cre mice. Reduced T-cell number in colon tissue of CerS5-ko mice was accompanied by a reduced expression of IL-1ß, IFNγ, and IL-4. In vitro investigations revealed that knockdown of ceramide synthase 5 in T-cells impaired T-cell activation. In summary, we show that CerS5-ko mice were more susceptible to dextran sodium sulfate-induced colitis and azoxymethane/dextran sodium sulfate-induced colitis-associated colon cancer. A reduced number of T-cells in the colon epithelium that was already the case in untreated CerS5-ko mice might have contributed to this effect.

10.
J Hepatol ; 73(6): 1347-1359, 2020 12.
Article in English | MEDLINE | ID: mdl-32598967

ABSTRACT

BACKGROUND & AIMS: Selective elimination of virus-infected hepatocytes occurs through virus-specific CD8 T cells recognizing peptide-loaded MHC molecules. Herein, we report that virus-infected hepatocytes are also selectively eliminated through a cell-autonomous mechanism. METHODS: We generated recombinant adenoviruses and genetically modified mouse models to identify the molecular mechanisms determining TNF-induced hepatocyte apoptosis in vivo and used in vivo bioluminescence imaging, immunohistochemistry, immunoblot analysis, RNAseq/proteome/phosphoproteome analyses, bioinformatic analyses, mitochondrial function tests. RESULTS: We found that TNF precisely eliminated only virus-infected hepatocytes independently of local inflammation and activation of immune sensory receptors. TNF receptor I was equally relevant for NF-kB activation in healthy and infected hepatocytes, but selectively mediated apoptosis in infected hepatocytes. Caspase 8 activation downstream of TNF receptor signaling was dispensable for apoptosis in virus-infected hepatocytes, indicating an unknown non-canonical cell-intrinsic pathway promoting apoptosis in hepatocytes. We identified a unique state of mitochondrial vulnerability in virus-infected hepatocytes as the cause for this non-canonical induction of apoptosis through TNF. Mitochondria from virus-infected hepatocytes showed normal biophysical and bioenergetic functions but were characterized by reduced resilience to calcium challenge. In the presence of unchanged TNF-induced signaling, reactive oxygen species-mediated calcium release from the endoplasmic reticulum caused mitochondrial permeability transition and apoptosis, which identified a link between extrinsic death receptor signaling and cell-intrinsic mitochondrial-mediated caspase activation. CONCLUSION: Our findings reveal a novel concept in immune surveillance by identifying a cell-autonomous defense mechanism that selectively eliminates virus-infected hepatocytes through mitochondrial permeability transition. LAY SUMMARY: The liver is known for its unique immune functions. Herein, we identify a novel mechanism by which virus-infected hepatocytes can selectively eliminate themselves through reduced mitochondrial resilience to calcium challenge.


Subject(s)
Caspase 8/metabolism , Hepatocytes , Mitochondria, Liver , Receptors, Tumor Necrosis Factor, Type I/metabolism , Animals , Apoptosis/immunology , Calcium Signaling , Cells, Cultured , Hepatocytes/metabolism , Hepatocytes/virology , Humans , Mice , Mitochondria, Liver/immunology , Mitochondria, Liver/metabolism , Mitochondrial Transmembrane Permeability-Driven Necrosis , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
11.
J Invest Dermatol ; 140(10): 1927-1937.e5, 2020 10.
Article in English | MEDLINE | ID: mdl-32092351

ABSTRACT

Epidermal barrier dysfunction is associated with a wide range of highly prevalent inflammatory skin diseases. However, the molecular processes that drive epidermal barrier maintenance are still largely unknown. Here, using quantitative proteomics, lipidomics, and mouse genetics, we characterize epidermal barrier maintenance versus a newly established barrier and functionally identify differential ceramide synthase 4 protein expression as one key difference. We show that epidermal loss of ceramide synthase 4 first disturbs epidermal lipid metabolism and adult epidermal barrier function, ultimately resulting in chronic skin barrier disease characterized by acanthosis, hyperkeratosis, and immune cell accumulation. Importantly, prolonged barrier dysfunction induced by loss of ceramide synthase 4 induced a barrier repair response that largely recapitulates molecular programs of barrier establishment. Collectively, this study provides an unbiased temporal proteomic characterization of barrier maintenance and disturbed homeostasis and shows that lipid homeostasis is essential to maintain adult skin barrier function to prevent disease.


Subject(s)
Homeostasis/physiology , Skin/metabolism , Sphingosine N-Acyltransferase/physiology , Animals , Epidermis/metabolism , Lipid Metabolism , Mice , Mice, Inbred C57BL , Morphogenesis , Proteomics
12.
Aging Cell ; 19(1): e13049, 2020 01.
Article in English | MEDLINE | ID: mdl-31692231

ABSTRACT

Loss of skeletal muscle mass is one of the most widespread and deleterious processes in aging humans. However, the mechanistic metabolic principles remain poorly understood. In the framework of a multi-organ investigation of age-associated changes of ceramide species, a unique and distinctive change pattern of C16:0 and C18:0 ceramide species was detected in aged skeletal muscle. Consistently, the expression of CerS1 and CerS5 mRNA, encoding the ceramide synthases (CerS) with substrate preference for C16:0 and C18:0 acyl chains, respectively, was down-regulated in skeletal muscle of aged mice. Similarly, an age-dependent decline of both CerS1 and CerS5 mRNA expression was observed in skeletal muscle biopsies of humans. Moreover, CerS1 and CerS5 mRNA expression was also reduced in muscle biopsies from patients in advanced stage of chronic heart failure (CHF) suffering from muscle wasting and frailty. The possible impact of CerS1 and CerS5 on muscle function was addressed by reversed genetic analysis using CerS1Δ/Δ and CerS5Δ/Δ knockout mice. Skeletal muscle from mice deficient of either CerS1 or CerS5 showed reduced caliber sizes of both slow (type 1) and fast (type 2) muscle fibers, fiber grouping, and fiber switch to type 1 fibers. Moreover, CerS1- and CerS5-deficient mice exhibited reduced twitch and tetanus forces of musculus extensor digitorum longus. The findings of this study link CerS1 and CerS5 to histopathological changes and functional impairment of skeletal muscle in mice that might also play a functional role for the aging skeletal muscle and for age-related muscle wasting disorders in humans.


Subject(s)
Ceramides/metabolism , Insulin Resistance/genetics , Adult , Aging , Animals , Female , Humans , Male , Mice , Mice, Knockout , Middle Aged , Muscle Fibers, Skeletal/metabolism , Muscle Strength , Young Adult
13.
Nat Microbiol ; 5(2): 354-367, 2020 02.
Article in English | MEDLINE | ID: mdl-31873204

ABSTRACT

The cytosolic appearance and propagation of bacteria cause overwhelming cellular stress responses that induce apoptosis under normal conditions. Therefore, successful bacterial colonization depends on the ability of intracellular pathogens to block apoptosis and to safeguard bacterial replicative niches. Here, we show that the cytosolic Gram-negative bacterium Shigella flexneri stalls apoptosis by inhibiting effector caspase activity. Our data identified lipopolysaccharide (LPS) as a bona fide effector caspase inhibitor that directly binds caspases by involving its O-antigen (O Ag) moiety. Bacterial strains that lacked the O Ag or failed to replicate within the cytosol were incapable of blocking apoptosis and exhibited reduced virulence in a murine model of bacterial infection. Our findings demonstrate how Shigella inhibits pro-apoptotic caspase activity, effectively delays coordinated host-cell demise and supports its intracellular propagation. Next to the recently discovered pro-inflammatory role of cytosolic LPS, our data reveal a distinct mode of LPS action that, through the disruption of the early coordinated non-lytic cell death response, ultimately supports the inflammatory breakdown of infected cells at later time points.


Subject(s)
Apoptosis/physiology , Caspase Inhibitors/metabolism , Caspases, Effector/metabolism , Gram-Negative Bacteria/pathogenicity , Lipopolysaccharides/metabolism , Shigella flexneri/pathogenicity , Animals , Cytosol/microbiology , Female , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/physiology , HeLa Cells , Humans , Male , Mice , Mice, Inbred C57BL , O Antigens/metabolism , Shigella flexneri/genetics , Shigella flexneri/physiology , Virulence
14.
J Vis Exp ; (153)2019 11 09.
Article in English | MEDLINE | ID: mdl-31762462

ABSTRACT

Macrophages are phagocytic cells specialized in detecting molecules of non-self origin. To this end, they are equipped with a large array of pattern recognition receptors (PRRs). Unfortunately, this also makes macrophages particularly challenging to transfect as the transfection reagent and the transfected nucleic acids are often recognized by the PRRs as non-self. Therefore, transfection often results in macrophage activation and degradation of the transfected nucleic acids or even in suicide of the macrophages. Here, we describe a protocol that allows highly efficient transfection of murine primary macrophages such as peritoneal macrophages (PM) and bone marrow-derived macrophages (BMDM) with mRNA in vitro transcribed from DNA templates such as plasmids. With this simple protocol, transfection rates of about 50-65% for PM and about 85% for BMDM are achieved without cytotoxicity or immunogenicity observed. We describe in detail the generation of mRNA for transfection from DNA constructs such as plasmids and the transfection procedure.


Subject(s)
Macrophages/metabolism , Transcription, Genetic , Transfection/methods , Animals , Macrophage Activation , Macrophages/immunology , Mice , Plasmids/genetics , RNA, Messenger/genetics
15.
Nature ; 575(7784): 683-687, 2019 11.
Article in English | MEDLINE | ID: mdl-31748744

ABSTRACT

Caspase-8 is the initiator caspase of extrinsic apoptosis1,2 and inhibits necroptosis mediated by RIPK3 and MLKL. Accordingly, caspase-8 deficiency in mice causes embryonic lethality3, which can be rescued by deletion of either Ripk3 or Mlkl4-6. Here we show that the expression of enzymatically inactive CASP8(C362S) causes embryonic lethality in mice by inducing necroptosis and pyroptosis. Similar to Casp8-/- mice3,7, Casp8C362S/C362S mouse embryos died after endothelial cell necroptosis leading to cardiovascular defects. MLKL deficiency rescued the cardiovascular phenotype but unexpectedly caused perinatal lethality in Casp8C362S/C362S mice, indicating that CASP8(C362S) causes necroptosis-independent death at later stages of embryonic development. Specific loss of the catalytic activity of caspase-8 in intestinal epithelial cells induced intestinal inflammation similar to intestinal epithelial cell-specific Casp8 knockout mice8. Inhibition of necroptosis by additional deletion of Mlkl severely aggravated intestinal inflammation and caused premature lethality in Mlkl knockout mice with specific loss of caspase-8 catalytic activity in intestinal epithelial cells. Expression of CASP8(C362S) triggered the formation of ASC specks, activation of caspase-1 and secretion of IL-1ß. Both embryonic lethality and premature death were completely rescued in Casp8C362S/C362SMlkl-/-Asc-/- or Casp8C362S/C362SMlkl-/-Casp1-/- mice, indicating that the activation of the inflammasome promotes CASP8(C362S)-mediated tissue pathology when necroptosis is blocked. Therefore, caspase-8 represents the molecular switch that controls apoptosis, necroptosis and pyroptosis, and prevents tissue damage during embryonic development and adulthood.


Subject(s)
Apoptosis/genetics , Caspase 8/genetics , Caspase 8/metabolism , Necroptosis/genetics , Pyroptosis/genetics , Animals , Cell Line , Cells, Cultured , Enzyme Activation/genetics , Gene Expression Profiling , Gene Knockout Techniques , HEK293 Cells , Humans , Inflammasomes/metabolism , Intestinal Mucosa/cytology , Intestinal Mucosa/enzymology , Keratinocytes/cytology , Keratinocytes/pathology , Mice , Mutation , Receptor, TIE-2/genetics , Receptor, TIE-2/metabolism
16.
PLoS One ; 14(8): e0220133, 2019.
Article in English | MEDLINE | ID: mdl-31369589

ABSTRACT

BACKGROUND: Hypobaric hypoxia has been reported to cause endothelial cell and platelet dysfunction implicated in the formation of microvascular lesions, and in its extremes may contribute to vascular leakage in high altitude pulmonary edema or blood brain barrier disruption leading to cerebral micro-hemorrhage (MH). Platelet function in the development of microvascular lesions remained ill defined, and is still incompletely understood. In this study platelet- and endothelial cell-derived extracellular vesicles (PEV and EEV, respectively) and cell adhesion molecules were characterized in plasma samples of members of a high altitude expedition to delineate the contribution of platelets and endothelial cells to hypobaric hypoxia-induced vascular dysfunction. METHODS AND FINDINGS: In this observational study, platelet and endothelial cell-derived extracellular vesicles were analysed by flow-cytometry in plasma samples from 39 mountaineers participating in a medical research climbing expedition to Himlung Himal, Nepal, 7,050m asl. Megakaryocyte/platelet-derived AnnexinVpos, PECAM-1 (CD31) and glycoprotein-1b (GP1b, CD42b) positive extracellular vesicles (PEV) constituted the predominant fraction of EV in plasma samples up to 6,050m asl. Exposure to an altitude of 7,050m led to a marked decline of CD31pos CD42neg EEV as well as of CD31pos CD42bpos PEV at the same time giving rise to a quantitatively prevailing CD31neg CD42blow/neg subpopulation of AnnexinVpos EV. An almost hundredfold increase in the numbers of this previously unrecognized population of CD31neg CD42blow/neg EV was observed in all participants reaching 7,050m asl. CONCLUSIONS: The emergence of CD31neg CD42blow/neg EV was observed in all participants and thus represents an early hypoxic marker at extreme altitude. Since CD31 and CD42b are required for platelet-endothelial cell interactions, these hypobaric hypoxia-dependent quantitative and phenotypic changes of AnnexinVpos EV subpopulations may serve as early and sensitive indicators of compromised vascular homeostasis.


Subject(s)
Altitude , Annexin A5/blood , Endothelial Cells/pathology , Extracellular Vesicles/pathology , Hypoxia/physiopathology , Platelet Endothelial Cell Adhesion Molecule-1/blood , Acclimatization , Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , Humans , Middle Aged
17.
J Med Microbiol ; 68(7): 1021-1032, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31188094

ABSTRACT

INTRODUCTION: The spread of carbapenem-resistant Acinetobacter baumannii has led to a worldwide healthcare problem. Carbapenem resistance in A. baumannii is mainly mediated by the acquisition of the carbapenem-hydrolyzing oxacillinase OXA-23. The phenotypic detection of carbapenem-producing A. baumannii is challenging and time-consuming. Hence, there is an unmet medical need for reliable and rapid diagnostic tools to detect OXA-23-producing Acinetobacter isolates to enable successful patient management. AIM: Development of an immunochromatographic lateral flow test (ICT) for the rapid and reliable detection of OXA-23-producing carbapenem-resistant Acinetobacter isolates. METHODOLOGY: For the development of an antibody-based ICT, we generated anti-OXA-23 monoclonal antibodies (MoAbs) and screened them sequentially for their ability to bind native OXA-23. Selected OXA-23-specific MoAbs were tested in different combinations for their capacity to capture and detect OXA-23His6 by sandwich enzyme-linked immunosorbent assay (ELISA) and ICT. A well-characterized collection of carbapenem-resistant Acinetobacter isolates with defined carbapenem resistance mechanisms were used to evaluate the specificity of the final OXA-23 ICT prototype. RESULTS: The antibody pairs best suited for the sandwich ELISA format did not match the best pairs in the ICT format selected during the development process of the final prototype OXA-23 ICT. This prototype was able to differentiate between OXA-23 subfamily-mediated carbapenem resistance and carbapenem-resistant Acinetobacter isolates overexpressing other OXAs with 100  % specificity and a turnaround time of 20 min from culture plate to result. CONCLUSION: With this rapid detection assay one can save 12-48 h of diagnostic time, which could help avoid inappropriate use of carbapenems and enable earlier intervention to control the transmission of OXA-23-producing carbapenem-resistant Acinetobacter isolates to other patients and healthcare workers.


Subject(s)
Acinetobacter baumannii/isolation & purification , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Drug Resistance, Multiple, Bacterial , Immunoassay/methods , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/enzymology , Acinetobacter baumannii/immunology , Animals , Anti-Bacterial Agents/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Bacterial Proteins , Carbapenems/metabolism , Cloning, Molecular , Female , Gene Expression Regulation, Bacterial , Mice , Microbial Sensitivity Tests , beta-Lactamases/genetics , beta-Lactamases/immunology , beta-Lactamases/metabolism
18.
Sci Signal ; 12(568)2019 02 12.
Article in English | MEDLINE | ID: mdl-30755476

ABSTRACT

A major function of macrophages during infection is initiation of the proinflammatory response, leading to the secretion of cytokines that help to orchestrate the immune response. Here, we identify reactive oxygen species (ROS) as crucial mediators of proinflammatory signaling leading to cytokine secretion in Listeria monocytogenes-infected macrophages. ROS produced by NADPH oxidases (Noxes), such as Nox2, are key components of the macrophage response to invading pathogens; however, our data show that the ROS that mediated proinflammatory signaling were produced by mitochondria (mtROS). We identified the inhibitor of κB (IκB) kinase (IKK) complex regulatory subunit NEMO [nuclear factor κB (NF-κB) essential modulator] as a target for mtROS. Specifically, mtROS induced intermolecular covalent linkage of NEMO through disulfide bonds formed by Cys54 and Cys347, which was essential for activation of the IKK complex and subsequent signaling through the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and NF-κB pathways that eventually led to the secretion of proinflammatory cytokines. We thus identify mtROS-dependent disulfide linkage of NEMO as an essential regulatory step of the proinflammatory response of macrophages to bacterial infection.


Subject(s)
Cytokines/metabolism , Inflammation Mediators/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Animals , Cysteine/chemistry , Cysteine/metabolism , Disulfides/chemistry , Disulfides/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Host-Pathogen Interactions , Intracellular Signaling Peptides and Proteins/chemistry , Listeria monocytogenes/physiology , Macrophages/metabolism , Macrophages/microbiology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , NADPH Oxidase 2/genetics , NADPH Oxidase 2/metabolism , NF-kappa B/metabolism , Signal Transduction
19.
Cell Host Microbe ; 23(3): 324-337.e5, 2018 Mar 14.
Article in English | MEDLINE | ID: mdl-29544096

ABSTRACT

The intracellular pathogen Listeria monocytogenes (L.m.) is targeted by the autophagic machinery, but the molecular mechanisms involved and consequences for anti-listerial immunity remain enigmatic. Here, we demonstrate that L.m. infection of macrophages in vivo exclusively evokes LC3-associated phagocytosis (LAP), but not canonical autophagy, and that targeting of L.m. by LAP is required for anti-listerial immunity. The pathway leading to LAP induction in response to L.m. infection emanates from the ß2 integrin Mac-1 (CR3, integrin αMß2), a receptor recognizing diverse microbial ligands. Interaction of L.m. with Mac-1 induces acid sphingomyelinase-mediated changes in membrane lipid composition that facilitate assembly and activation of the phagocyte NAPDH oxidase Nox2. Nox2-derived reactive oxygen species then trigger LC3 recruitment to L.m.-containing phagosomes by LAP. By promoting fusion of L.m.-containing phagosomes with lysosomes, LAP increases exposure of L.m. to bactericidal acid hydrolases, thereby enhancing anti-listerial activity of macrophages and immunity of mice.


Subject(s)
CD18 Antigens/immunology , Host-Pathogen Interactions/immunology , Listeria monocytogenes/immunology , Listeriosis/immunology , Macrophage-1 Antigen/immunology , Phagocytosis , Animals , Autophagy , Disease Models, Animal , Listeria monocytogenes/pathogenicity , Lysosomes , Macrophages/immunology , Mice , Mice, Inbred C57BL , NADPH Oxidase 2/metabolism , Phagosomes , Reactive Oxygen Species/metabolism , Sphingomyelin Phosphodiesterase , Virulence Factors
20.
Am J Physiol Lung Cell Mol Physiol ; 314(1): L157-L164, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28971974

ABSTRACT

In vitro and animal studies revealed micro-RNAs (miRs) to be involved in modulation of hypoxia-induced pulmonary hypertension (HPH). However, knowledge of circulating miRs in humans in the context of HPH is very limited. Since symptoms of HPH are nonspecific and noninvasive diagnostic parameters do not exist, a disease-specific and hypoxemia-independent biomarker indicating HPH would be of clinical value. To examine whether plasma miR levels correlate with hypoxia-induced increase in pulmonary artery pressures, plasma miRs were assessed in a model of hypoxia-related pulmonary hypertension in humans exposed to extreme altitude. Forty healthy volunteers were repetitively examined during a high-altitude expedition up to an altitude of 7,050 m. Plasma levels of miR-17, -21, and -190 were measured by real-time quantitative PCR and correlated with systolic pulmonary artery pressure (SPAP), which was assessed by echocardiography. A significant altitude-dependent increase in circulating miR expression was found (all P values < 0.0001). Compared with baseline at 500 m, miR-17 changed by 4.72 ± 0.57-fold, miR-21 changed by 1.91 ± 0.33-fold, and miR-190 changed by 3.61 ± 0.54-fold at 7,050 m (means ± SD). Even after adjusting for hypoxemia, miR-17 and miR-190 were found to be independently correlated with increased SPAP. Progressive hypobaric hypoxia significantly affects levels of circulating miR-17, -21, and -190. Independently from the extent of hypoxemia, miR-17 and -190 significantly correlate with increased SPAP. These novel findings provide evidence for an epigenetic modulation of hypoxia-induced increase in pulmonary artery pressures by miR-17 and -190 and suggest the potential value of these miRs as biomarkers for HPH.


Subject(s)
Altitude Sickness/complications , Hypertension, Pulmonary/blood , Hypoxia/physiopathology , MicroRNAs/genetics , Pulmonary Artery/pathology , Adolescent , Adult , Aged , Altitude , Female , Humans , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/pathology , Male , MicroRNAs/blood , Middle Aged , Pulmonary Artery/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...