Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Aging Cell ; 20(2): e13296, 2021 02.
Article in English | MEDLINE | ID: mdl-33470505

ABSTRACT

Cellular senescence is characterized by an irreversible cell cycle arrest and a pro-inflammatory senescence-associated secretory phenotype (SASP), which is a major contributor to aging and age-related diseases. Clearance of senescent cells has been shown to improve brain function in mouse models of neurodegenerative diseases. However, it is still unknown whether senescent cell clearance alleviates cognitive dysfunction during the aging process. To investigate this, we first conducted single-nuclei and single-cell RNA-seq in the hippocampus from young and aged mice. We observed an age-dependent increase in p16Ink4a senescent cells, which was more pronounced in microglia and oligodendrocyte progenitor cells and characterized by a SASP. We then aged INK-ATTAC mice, in which p16Ink4a -positive senescent cells can be genetically eliminated upon treatment with the drug AP20187 and treated them either with AP20187 or with the senolytic cocktail Dasatinib and Quercetin. We observed that both strategies resulted in a decrease in p16Ink4a exclusively in the microglial population, resulting in reduced microglial activation and reduced expression of SASP factors. Importantly, both approaches significantly improved cognitive function in aged mice. Our data provide proof-of-concept for senolytic interventions' being a potential therapeutic avenue for alleviating age-associated cognitive impairment.


Subject(s)
Cognitive Dysfunction/pathology , Encephalitis/pathology , Age Factors , Animals , Cellular Senescence , Cognitive Dysfunction/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Encephalitis/metabolism , Mice , Mice, Transgenic
2.
Genes Dev ; 34(5-6): 428-445, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32001510

ABSTRACT

Cellular senescence is a potent tumor suppressor mechanism but also contributes to aging and aging-related diseases. Senescence is characterized by a stable cell cycle arrest and a complex proinflammatory secretome, termed the senescence-associated secretory phenotype (SASP). We recently discovered that cytoplasmic chromatin fragments (CCFs), extruded from the nucleus of senescent cells, trigger the SASP through activation of the innate immunity cytosolic DNA sensing cGAS-STING pathway. However, the upstream signaling events that instigate CCF formation remain unknown. Here, we show that dysfunctional mitochondria, linked to down-regulation of nuclear-encoded mitochondrial oxidative phosphorylation genes, trigger a ROS-JNK retrograde signaling pathway that drives CCF formation and hence the SASP. JNK links to 53BP1, a nuclear protein that negatively regulates DNA double-strand break (DSB) end resection and CCF formation. Importantly, we show that low-dose HDAC inhibitors restore expression of most nuclear-encoded mitochondrial oxidative phosphorylation genes, improve mitochondrial function, and suppress CCFs and the SASP in senescent cells. In mouse models, HDAC inhibitors also suppress oxidative stress, CCF, inflammation, and tissue damage caused by senescence-inducing irradiation and/or acetaminophen-induced mitochondria dysfunction. Overall, our findings outline an extended mitochondria-to-nucleus retrograde signaling pathway that initiates formation of CCF during senescence and is a potential target for drug-based interventions to inhibit the proaging SASP.


Subject(s)
Cell Nucleus/pathology , Cellular Senescence/physiology , Chromatin/pathology , Cytoplasm/pathology , Mitochondria/pathology , Signal Transduction , Animals , Cell Nucleus/physiology , Gene Expression Regulation, Developmental/drug effects , Histone Deacetylase Inhibitors/pharmacology , Humans , Inflammation/physiopathology , MAP Kinase Signaling System/physiology , Male , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/physiology , Reactive Oxygen Species/metabolism , Tumor Suppressor p53-Binding Protein 1/metabolism
4.
Cell Metab ; 29(5): 1061-1077.e8, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30612898

ABSTRACT

Cellular senescence entails a stable cell-cycle arrest and a pro-inflammatory secretory phenotype, which contributes to aging and age-related diseases. Obesity is associated with increased senescent cell burden and neuropsychiatric disorders, including anxiety and depression. To investigate the role of senescence in obesity-related neuropsychiatric dysfunction, we used the INK-ATTAC mouse model, from which p16Ink4a-expressing senescent cells can be eliminated, and senolytic drugs dasatinib and quercetin. We found that obesity results in the accumulation of senescent glial cells in proximity to the lateral ventricle, a region in which adult neurogenesis occurs. Furthermore, senescent glial cells exhibit excessive fat deposits, a phenotype we termed "accumulation of lipids in senescence." Clearing senescent cells from high fat-fed or leptin receptor-deficient obese mice restored neurogenesis and alleviated anxiety-related behavior. Our study provides proof-of-concept evidence that senescent cells are major contributors to obesity-induced anxiety and that senolytics are a potential new therapeutic avenue for treating neuropsychiatric disorders.


Subject(s)
Anxiety/etiology , Cellular Senescence/drug effects , Neurogenesis , Obesity/complications , Animals , Anxiety/drug therapy , Astrocytes/metabolism , Behavior, Animal/drug effects , Brain/cytology , Brain/embryology , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p16/genetics , Dasatinib/pharmacology , Diet, High-Fat/adverse effects , Disease Models, Animal , Female , Fibroblasts/metabolism , Lipid Droplets , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Obesity/etiology , Quercetin/pharmacology , Tacrolimus/analogs & derivatives , Tacrolimus/pharmacology , Tacrolimus/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...