Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 13(12)2023 12 12.
Article in English | MEDLINE | ID: mdl-38136647

ABSTRACT

Currently, there is great interest in the development of highly sensitive bioanalytical systems for diagnosing diseases at an early stage, when pathological biomarkers are present in biological fluids at low concentrations and there are no clinical manifestations. A promising direction is the use of molecular detectors-highly sensitive devices that detect signals from single biomacromolecules. A typical detector in this class is the atomic force microscope (AFM). The high sensitivity of an AFM-based bioanalysis system is determined by the size of the sensing element of an atomic force microscope-the cantilever-the radius of the curvature of which is comparable to that of a biomolecule. Biospecific molecular probe-target interactions are used to ensure detection system specificity. Antibodies, aptamers, synthetic antibodies, and peptides can be used as molecular probes. This study has demonstrated the possibility of using aptamers as molecular probes for AFM-based detection of the ovarian cancer biomarker CA125. Antigen detection in a nanomolar solution was carried out using AFM chips with immobilized aptamers, commercially available or synthesized based on sequences from open sources. Both aptamer types can be used for antigen detection, but the availability of sequence information enables additional modeling of the aptamer structure with allowance for modifications necessary for immobilization of the aptamer on an AFM chip surface. Information on the structure and oligomeric composition of aptamers in the solution was acquired by combining small-angle X-ray scattering and molecular modeling. Modeling enabled pre-selection, before the experimental stage, of aptamers for use as surface-immobilized molecular probes.


Subject(s)
Aptamers, Nucleotide , Microscopy, Atomic Force , Aptamers, Nucleotide/chemistry , Molecular Probes , Models, Molecular
2.
Int J Mol Sci ; 24(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37895017

ABSTRACT

Morphological features of the nanoform of a phospholipid composition (NFPh), which can be used as an individual pharmaceutic agent or as a platform for designing drug delivery systems, have been studied using atomic force microscopy (AFM). NFPh has been developed, and its characteristics have been investigated using conventional drug analysis methods, including the determination of the mean diameter of nanosized vesicles in the emulsion via dynamic light scattering (DLS). Using DLS, the mean diameter of the vesicles was found to be ~20 nm. AFM imaging of the surface has revealed four types of objects related to NFPh: (1) compact objects; (2) layer fragments; (3) lamellar structures; and (4) combined objects containing the compact and extended parts. For type (4) objects, it has been found that the geometric ratio of the volume of the convex part to the total area of the entire object is constant. It has been proposed that these objects formed owing to fusion of vesicles of the same size (with the same surface-to-volume ratio). It has been shown that this is possible for vesicles with diameters of 20 nm. This diameter is in good coincidence with the value obtained using DLS.


Subject(s)
Phospholipids , Phospholipids/chemistry , Microscopy, Atomic Force/methods , Dynamic Light Scattering
3.
Int J Mol Sci ; 24(12)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37372975

ABSTRACT

In the present work, complexes of DNA with nano-clay montmorillonite (Mt) were investigated by means of atomic force microscopy (AFM) under various conditions. In contrast to the integral methods of analysis of the sorption of DNA on clay, AFM allowed us to study this process at the molecular level in detail. DNA molecules in the deionized water were shown to form a 2D fiber network weakly bound to both Mt and mica. The binding sites are mostly along Mt edges. The addition of Mg2+ cations led to the separation of DNA fibers into separate molecules, which bound mainly to the edge joints of the Mt particles according to our reactivity estimations. After the incubation of DNA with Mg2+, the DNA fibers were capable of wrapping around the Mt particles and were weakly bound to the Mt edge surfaces. The reversible sorption of nucleic acids onto the Mt surface allows it to be used for both RNA and DNA isolation for further reverse transcription and polymerase chain reaction (PCR). Our results show that the strongest binding sites for DNA are the edge joints of Mt particles.


Subject(s)
Bentonite , DNA , Bentonite/chemistry , Microscopy, Atomic Force/methods , DNA/chemistry , Aluminum Silicates/chemistry , Binding Sites , Cations/chemistry
4.
Biosensors (Basel) ; 13(4)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37185532

ABSTRACT

In the present work, screen-printed electrodes (SPE) modified with a synthetic surfactant, didodecyldimethylammonium bromide (DDAB) and streptolysin O (SLO) were prepared for cytochrome P450 3A4 (CYP3A4) immobilization, direct non-catalytic and catalytic electrochemistry. The immobilized CYP3A4 demonstrated a pair of redox peaks with a formal potential of -0.325 ± 0.024 V (vs. the Ag/AgCl reference electrode). The electron transfer process showed a surface-controlled mechanism ("protein film voltammetry") with an electron transfer rate constant (ks) of 0.203 ± 0.038 s-1. Electrochemical CYP3A4-mediated reaction of N-demethylation of erythromycin was explored with the following parameters: an applied potential of -0.5 V and a duration time of 20 min. The system with DDAB/SLO as the electrode modifier showed conversion of erythromycin with an efficiency higher than the electrode modified with DDAB only. Confining CYP3A4 inside the protein frame of SLO accelerated the enzymatic reaction. The increases in product formation in the reaction of the electrochemical N-demethylation of erythromycin for SPE/DDAB/CYP3A4 and SPE/DDAB/SLO/CYP3A4 were equal to 100 ± 22% and 297 ± 7%, respectively. As revealed by AFM images, the SPE/DDAB/SLO possessed a more developed surface with protein cavities in comparison with SPE/DDAB for the effective immobilization of the CYP3A4 enzyme.


Subject(s)
Cytochrome P-450 CYP3A , Membrane Proteins , Electrodes , Erythromycin
5.
Open Microbiol J ; 6: 22-8, 2012.
Article in English | MEDLINE | ID: mdl-22408697

ABSTRACT

Biointerfaces with a highly sensitive surface designed for specific interaction with biomolecules are essential approaches for providing advanced biochemical and biosensor assays. For the first time, we have introduced a simple AFM-based recognition system capable of visualizing specific bacterial nanofragments and identifying the corresponding bacterial type. For this we developed AFM-adjusted procedures for preparing IgG-based surfaces and subsequently exposing them to antigens. The AFM images reveal the specific binding of Escherichia coli cell fragments to the prepared biofunctional surfaces. Moreover, the binding of bacterial cell fragments to the affinity surfaces can be characterized quantitatively, indicating a 30-fold to 80-fold increase in the quantity of bound antigenic material in the case of a specific antigen-antibody pair. Our results demonstrate significant opportunities for developing reliable sensing procedures for detecting pathogenic bacteria, and the cell can still be identified after it is completely destroyed.

6.
Langmuir ; 24(22): 13068-74, 2008 Nov 18.
Article in English | MEDLINE | ID: mdl-18850726

ABSTRACT

Atomic force microscopy (AFM) was used to study the process of infection of bacterial cells by bacteriophages, for which purpose experimental protocols were elaborated. Three types of bacteriophages were characterized with AFM and transmission electron microscopy (TEM). Bacteriophage interaction with cells was studied for three bacterial hosts: Gram-negative Escherichia coli 057 and Salmonella enteritidis 89 and Gram-positive Bacillus thuringiensis 393. Depending on the phase of lytic cycle, different cell surface changes are observed in AFM images of infected cells in comparison with intact cells: from phage adsorption on the cells and flagella to complete lysis of the cells, accompanied by the release of a large number of newly formed phages. Control experiments (cells without phages and cells with nonspecific phages) did not reveal any surface changes. Penetration of phages inside obligate aerobe Bacillus thuringiensis was shown to be oxygen-dependent and required aeration in laboratory conditions. Our results show great potential of using AFM for numerous fundamental and applied tasks connected with pathogen-host interaction.


Subject(s)
Bacillus thuringiensis/metabolism , Bacteria/metabolism , Escherichia coli/metabolism , Microscopy, Atomic Force/methods , Salmonella enteritidis/metabolism , Bacillus Phages/metabolism , Bacteriophages/metabolism , Biochemistry/methods , Colony Count, Microbial , Microscopy, Electron, Transmission , Models, Biological , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...