Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Pathogens ; 13(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38921814

ABSTRACT

The efficacy of an intranasal (IN) bovine respiratory syncytial virus (BRSV) vaccine administered in the presence of passive immunity was assessed. Pooled colostrum was administered by intubation to 50 beef-dairy crossbred calves the day they were born. The calves were transported to a research facility and were blocked by age and sex, and randomly assigned into two groups: sham-vaccinated intranasally with a placebo (sterile water) or vaccinated with a trivalent (BRSV, bovine herpesvirus 1 and bovine parainfluenza 3) modified live viral (MLV) vaccine. The calves were 9 ± 2 days old when vaccinated (day 0). The calves were challenged by aerosolized BRSV on days 80 and 81 as a respiratory challenge. The study was terminated on day 88. Lung lesion scores (LLS) were significantly lower for calves vaccinated with trivalent MLV vaccine than those for calves that were sham-vaccinated. Serum neutralization (SN) antibody against BRSV in calves vaccinated with the trivalent MLV vaccine demonstrated an anamnestic response on day 88. After challenge, the calves sham-vaccinated with the placebo lost weight, while those vaccinated with the trivalent MLV vaccine gained weight. In this study, colostrum-derived antibodies did not interfere with the immune response or protection provided by one dose of the trivalent MLV vaccine.

2.
Sci Rep ; 13(1): 22873, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38129491

ABSTRACT

Evidence in SARS-CoV-2 patients have identified that viral infection is accompanied by the expression of inflammatory mediators by both immune and stromal cells within the pulmonary system. However, the immunogenicity of individual SARS-CoV-2 proteins has yet to be evaluated. The SARS-CoV-2 virus consists of 29 proteins, categorized either as nonstructural proteins (NSP's), structural proteins (SP's) or accessory proteins. Here we sought to evaluate the immunogenicity of NSP 1, 7, 8, 9, 10, 12, 14, 16 and the SP's spike protein (full length, S1, S2 and receptor binding domain subunits), nucleocapsid and membrane SARS-CoV-2 proteins against THP-1 and human peripheral blood mononuclear cells (PBMCs). Our results indicate that various SARS-CoV-2 proteins elicit a proinflammatory immune response indicated by increases in cytokines TNF, IL-6 and IL-1ß. Our results support that SARS-CoV-2 membrane protein induced a robust increase of TNF, IL-6, IL-1ß and IL-10 expression in both THP-1 and human PBMC's. Further evaluation of intranasal membrane protein challenge in male and female BALB/c mice show increases in BALF (bronchalveolar lavage fluid) proinflammatory cytokine expression, elevated cellularity, predominantly neutrophilic, and concomitant peribronchiolar and perivascular lymphomononuclear and neutrophilic inflammation. Our results suggest that individual membrane associated SARS-CoV-2 proteins induce a robust immune response that may contribute to viral induced cytokine release syndrome (CRS) in the lungs of moderate to severe COVID-19 patients. We posit that SARS-CoV-2 membrane challenges in immune-competent mice can serve as an adequate surrogate for the development of novel treatments for SARS-CoV-2 induced pulmonary inflammation, thereby avoiding expensive live virus studies under BSL-3 conditions.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Male , Female , Animals , Mice , Leukocytes, Mononuclear , Membrane Proteins , Interleukin-6 , Cytokines
3.
Vaccine ; 41(19): 3080-3091, 2023 05 05.
Article in English | MEDLINE | ID: mdl-37045678

ABSTRACT

Bovine respiratory disease is the greatest threat to calf health. In this study, colostrum-fed dairy X beef calves were vaccinated at ∼30 days of age with an adjuvanted parenteral vaccine containing modified live bovine viral diarrhea virus (BVDV) type 1 and type 2, bovine herpesvirus 1 (BHV-1), bovine parainfluenza type 3 virus (PI3V) and bovine respiratory syncytial virus (BRSV) andM. haemolyticatoxoid (Group 1), or intranasal temperature-sensitive BHV-1, BRSV and PI3V concurrently witha parenteral vaccine containing modified live BVDV type 1 and type 2 andM. haemolyticatoxoid (Group 2) or a placebo (Group 3). The calves were challenged ∼150 days post vaccination intranasally with BVDV 1b and then 7 days later intratracheally withM. haemolytica. The calves wereeuthanized 6 days after theM. haemolyticachallenge. Clinical signs following BVDV infection were similar in all groups. There was increased rectal temperatures in the Groups 2 and 3 on day 3 and in Group 3 on days 8-13. Group 1 animals had a slight leukopenia following BVDV infection while Groups 2 and 3 had greater leukopenia. BVDV type 1 and 2 serum titers increased in Group 1 following vaccination while these titers waned in Groups 2 and 3. There were higher levels of BVDV in the buffy coats and nasal samples in Group 2 and Group 3 versus Group 1 (p < 0.01). Interferon-gamma response was higher (p < 0.01) in Group 1 animals than Groups 2 and 3. Group 1 had the lowest percent pneumonic tissue (1.6%) while Group 2 vaccinates had 3.7% and the control Group 3 was 5.3%. Vaccination in the face of maternal antibody with a parenteral adjuvanted vaccine resulted in better protection than the regimen of an intranasal vaccine anda parenteral adjuvanted BVDV andM haemolyticacombination vaccine in a BVDV-M. haemolyticadual challenge.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease , Cattle Diseases , Diarrhea Virus 1, Bovine Viral , Diarrhea Viruses, Bovine Viral , Herpesvirus 1, Bovine , Leukopenia , Mannheimia , Respiratory Tract Diseases , Viral Vaccines , Animals , Cattle , Bovine Virus Diarrhea-Mucosal Disease/prevention & control , Antibodies, Viral , Cattle Diseases/prevention & control , Vaccination/veterinary , Diarrhea
4.
Am J Physiol Heart Circ Physiol ; 324(6): H804-H820, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36961489

ABSTRACT

Right ventricular (RV) failure is the major determinant of outcome in pulmonary hypertension (PH). Calves exposed to 2-wk hypoxia develop severe PH and unlike rodents, hypoxia-induced PH in this species can lead to right heart failure. We, therefore, sought to examine the molecular and structural changes in the RV in calves with hypoxia-induced PH, hypothesizing that we could identify mechanisms underlying compensated physiological function in the face of developing severe PH. Calves were exposed to 14 days of environmental hypoxia (equivalent to 4,570 m/15,000 ft elevation, n = 29) or ambient normoxia (1,525 m/5,000 ft, n = 25). Cardiopulmonary function was evaluated by right heart catheterization and pressure volume loops. Molecular and cellular determinants of RV remodeling were analyzed by cDNA microarrays, RealTime PCR, proteomics, and immunochemistry. Hypoxic exposure induced robust PH, with increased RV contractile performance and preserved cardiac output, yet evidence of dysregulated RV-pulmonary artery mechanical coupling as seen in advanced disease. Analysis of gene expression revealed cellular processes associated with structural remodeling, cell signaling, and survival. We further identified specific clusters of gene expression associated with 1) hypertrophic gene expression and prosurvival mechanotransduction through YAP-TAZ signaling, 2) extracellular matrix (ECM) remodeling, 3) inflammatory cell activation, and 4) angiogenesis. A potential transcriptomic signature of cardiac fibroblasts in RV remodeling was detected, enriched in functions related to cell movement, tissue differentiation, and angiogenesis. Proteomic and immunohistochemical analysis confirmed RV myocyte hypertrophy, together with localization of ECM remodeling, inflammatory cell activation, and endothelial cell proliferation within the RV interstitium. In conclusion, hypoxia and hemodynamic load initiate coordinated processes of protective and compensatory RV remodeling to withstand the progression of PH.NEW & NOTEWORTHY Using a large animal model and employing a comprehensive approach integrating hemodynamic, transcriptomic, proteomic, and immunohistochemical analyses, we examined the early (2 wk) effects of severe PH on the RV. We observed that RV remodeling during PH progression represents a continuum of transcriptionally driven processes whereby cardiac myocytes, fibroblasts, endothelial cells, and proremodeling macrophages act to coordinately maintain physiological homeostasis and protect myocyte survival during chronic, severe, and progressive pressure overload.


Subject(s)
Heart Failure , Hypertension, Pulmonary , Ventricular Dysfunction, Right , Animals , Cattle , Hypertension, Pulmonary/metabolism , Endothelial Cells/metabolism , Mechanotransduction, Cellular , Proteomics , Hypertrophy, Right Ventricular/genetics , Hypertrophy, Right Ventricular/metabolism , Heart Ventricles , Disease Models, Animal , Hypoxia , Ventricular Remodeling , Ventricular Function, Right , Ventricular Dysfunction, Right/genetics , Ventricular Dysfunction, Right/complications
5.
F1000Res ; 11: 385, 2022.
Article in English | MEDLINE | ID: mdl-38680232

ABSTRACT

Background: Bovine congestive heart failure (BCHF) has become increasingly prevalent among feedlot cattle in the Western Great Plains of North America with up to 7% mortality in affected herds. BCHF is an untreatable complex condition involving pulmonary hypertension that culminates in right ventricular failure and death. Genes associated with BCHF in feedlot cattle have not been previously identified. Our aim was to search for genomic regions associated with this disease. Methods: A retrospective, matched case-control design with 102 clinical BCHF cases and their unaffected pen mates was used in a genome-wide association study. Paired nominal data from approximately 560,000 filtered single nucleotide polymorphisms (SNPs) were analyzed with McNemar's test. Results: Two independent genomic regions were identified as having the most significant association with BCHF: the arrestin domain-containing protein 3 gene ( ARRDC3), and the nuclear factor IA gene ( NFIA, mid- p-values, 1x10 -8 and 2x10 -7, respectively). Animals with two copies of risk alleles at either gene were approximately eight-fold more likely to have BCHF than their matched pen mates with either one or zero risk alleles at both genes (CI 95 = 3-17). Further, animals with two copies of risk alleles at both genes were 28-fold more likely to have BCHF than all others ( p-value = 1×10 -7, CI 95 = 4-206). A missense variant in ARRDC3 (C182Y) represents a potential functional variant since the C182 codon is conserved among all other jawed vertebrate species observed. A two-SNP test with markers in both genes showed 29% of 273 BCHF cases had homozygous risk genotypes in both genes, compared to 2.5% in 198 similar unaffected feedlot cattle. This and other DNA tests may be useful for identifying feedlot animals with the highest risk for BCHF in the environments described here. Conclusions: Although pathogenic roles for variants in the ARRDC3 and NFIA genes are unknown, their discovery facilitates classifying animals by genetic risk and allows cattle producers to make informed decisions for selective breeding and animal health management.


Subject(s)
Arrestins , Cattle Diseases , Genetic Predisposition to Disease , Heart Failure , NFI Transcription Factors , Animals , Cattle , Arrestins/genetics , Case-Control Studies , Cattle Diseases/genetics , Genome-Wide Association Study , Heart Failure/genetics , Heart Failure/veterinary , NFI Transcription Factors/genetics , Polymorphism, Single Nucleotide , Retrospective Studies
6.
Front Physiol ; 12: 712583, 2021.
Article in English | MEDLINE | ID: mdl-34552503

ABSTRACT

Pulmonary hypertension (PH) is an incurable condition in humans; driven by pulmonary vascular remodeling partially mediated by epigenetic mechanisms; and leading to right ventricular hypertrophy, failure, and death. We hypothesized that targeting chromatin-modifying histone deacetylases may provide benefit. In this Brief Report we describe case comparison studies using the histone deacetylase inhibitor vorinostat (suberanilohydroxamic acid, 5 mg/kg/day for the first 5 study days) in an established model of severe neonatal bovine PH induced by 14 days of environmental hypoxia. Echocardiographic, hemodynamic, and pharmacokinetic data were obtained in hypoxia-exposed (one each, vorinostat-treated vs. untreated) and normoxic vorinostat-treated control animals (n = 2). Echocardiography detected PH changes by day 4 and severe PH over 14 days of continued hypoxic exposure. RV dysfunction at day 4 was less severe in vorinostat-treated compared to untreated hypoxic calves. Cardioprotective effects were partially maintained following cessation of treatment through the duration of hypoxic exposure, accompanied by hemodynamic evidence suggestive of reduced pulmonary vascular stiffening, and modulated expression of HDAC1 protein and genes involved in RV and pulmonary vascular remodeling and pathological RV hypertrophy. Control calves did not develop PH, nor show adverse cardiac or clinical effects. These results provide novel translation of epigenetic-directed therapy to a large animal severe PH model that recapitulates important features of human disease.

7.
F1000Res ; 8: 1189, 2019.
Article in English | MEDLINE | ID: mdl-31543958

ABSTRACT

Background:  Bovine congestive heart failure (BCHF) has become increasingly prevalent in feedlot cattle in the Western Great Plains of North America. BCHF is an untreatable complex condition involving pulmonary hypertension that culminates in right ventricular failure and death. A protein variant of hypoxia-inducible factor 2 alpha (HIF2α, encoded by the endothelial PAS domain-containing protein 1 gene, EPAS1) was previously reported to be associated with pulmonary hypertension at altitudes exceeding 2,000 m. Our aim was to evaluate EPAS1 haplotypes for association with BCHF in feedlot cattle raised at moderate altitudes (1,200 m). Methods: Paired samples of clinical cases and unaffected controls were collected at four feedlots in Nebraska and Wyoming. Each pair (n =102) was matched for source, pen, breed type, sex, arrival date, and management conditions. Cases were identified by animal caretakers, euthanized, and diagnosis was confirmed at necropsy. Cases were derived from 30 different ranch operations, with the largest source contributing 32. Animals were tested for eight EPAS1 haplotypes encoding 36 possible different diploid combinations. Results: The common, ancestral EPAS1 haplotype encoding HIF2α with alanine (A) at position 606 and glycine (G) at position 610 was equally frequent in cases and controls (0.67). The EPAS1 variant haplotype reported to be associated with disease (encoding threonine (T) at position 606 and serine (S) at position 610) was not enriched in cases compared with controls (0.21 and 0.25, respectively). Frequencies of other EPAS1 haplotypes (e.g., encoding Q270, L362, or G671) were each less than 0.05 overall. McNemar's test with 45 discordant pairs showed the linked T606/S610 variant was not associated with BCHF (OR = 0.73, CI 95 0.38 -1.4, p-value = 0.37). Conclusions: HIF2α polypeptide variants were not significantly associated with BCHF in feedlot cattle at moderate altitudes. Thus, a wider search is needed to identify genetic risk factors underlying this disease.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Heart Failure , Hypertension, Pulmonary , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cattle , Haplotypes , Heart Failure/genetics , Heart Failure/veterinary
8.
Pulm Circ ; 9(1): 2045894019837876, 2019.
Article in English | MEDLINE | ID: mdl-30806156

ABSTRACT

Caveolin-1 (cav-1) has been shown to play a significant role in the pathogenesis of pulmonary hypertension (PH). In the monocrotaline model of PH, the loss of endothelial cav-1 as well as reciprocal activation of proliferative and anti-apoptotic pathways initiate the disease process and facilitate its progression. In order to examine the role of cav-1 in hypoxia-induced PH, we exposed rats and neonatal calves to hypobaric hypoxia and obtained hemodynamic data and assessed the expression of cav-1 and related proteins eNOS, HSP90, PTEN, gp130, PY-STAT3, ß-catenin, and Glut1 in the lung tissue. Chronic hypoxic exposure in rats (48 h-4 weeks) and calves (two weeks) did not alter the expression of cav-1, HSP90, or eNOS. PTEN expression was significantly decreased accompanied by PY-STAT3 activation and increased expression of gp130, Glut1, and ß-catenin in hypoxic animals. We also examined cav-1 expression in the lung sections from steers with chronic hypoxic disease (Brisket disease) and from patients with chronic lung disease who underwent lung biopsy for medical reasons. There was no cav-1 loss in Brisket disease. In chronic lung disease cases, endothelial cav-1 expression was present, albeit with less intense staining in some cases. In conclusion, hypoxia did not alter the cav-1 expression in experimental models. The presence of cav-1, however, did not suppress hypoxia-induced activation of PY-STAT3 and ß catenin, increased gp130 and Glut1 expression, or prevent the PTEN loss, indicating cav-1 dysfunction in hypoxia-induced PH.

10.
Pulm Circ ; 9(1): 2045894018796804, 2019.
Article in English | MEDLINE | ID: mdl-30124135

ABSTRACT

The obesity epidemic in developed societies has led to increased cardiovascular diseases including pulmonary hypertension associated with left heart disease (PH-LHD), the largest and fastest-growing class of PH. Similar to obese humans, PH and heart failure (HF) are increasingly recognized in North American fattened beef cattle. We hypothesized that PH and HF in fattened beef cattle are novel, phenotypically distinct manifestations of bovine PH arising from left ventricular (LV) dysfunction similar to obesity-related PH-LHD in humans. We conducted a semi-quantitative histopathological assessment of cardiopulmonary tissues obtained from fattened beef cattle suffering end-stage HF compared to asymptomatic cattle of equivalent age undergoing the same fattening regimens. In HF animals we observed significant LV fibrosis, abundant cardiac adipose depots, coronary artery injury, and pulmonary venous remodeling recapitulating human obesity-related PH-LHD. Additionally, striking muscularization, medial hypertrophy, adventitial fibrosis, and vasa vasorum hyperplasia in the pulmonary arterial circulation were associated with sequela of pathologic right ventricular (RV) remodeling suggesting combined pulmonary venous and arterial hypertension. The association between obesity, pathologic cardiopulmonary remodeling, and HF in fattened beef cattle appears to recapitulate the complex pathophysiology of obesity-associated PH-LHD in humans. This novel, naturally occurring, and large animal model may provide mechanistic and translational insights into human disease.

11.
Front Physiol ; 9: 955, 2018.
Article in English | MEDLINE | ID: mdl-30090067

ABSTRACT

Rationale: Therapeutic exercise training has been shown to significantly improve pulmonary hypertension (PH), including 6-min walking distance and right heart function. Supplemental nightly oxygen also has therapeutic effects. A biomarker tool that could query critical gene networks would aid in understanding the molecular effects of the interventions. Methods: Paired bio-banked serum (n = 31) or plasma (n = 21) samples from the exercise or oxygen intervention studies, respectively, and bio-banked plasma samples (n = 20) from high altitude induced PH in cattle were tested. MicroRNAs (miRNAs) markers were chosen for study because they regulate gene expression, control the function of specific gene networks, and are conserved across species. Results: miRNAs that control muscle (miR-22-3p, miR-21-5p) or erythrocyte function (miR-451a) were chosen based on pilot experiments. Plasma samples from cattle that developed PH in high altitude had significantly higher miR-22-3p/(relative to) miR-451a values when compared to control cattle tolerant to high altitude. Measurements of miR-22-3p/miR-451a values in serum from patients receiving exercise training showed that the values were significantly decreased in 74.2% of the samples following intervention and significantly increased in the remainder (25.8%). In samples obtained after exercise intervention, a higher composite miRNA value, made of miR-22-3p and miR-21-5p/miR-451a and spike RNA, was significantly decreased in 65% of the samples and significantly increased in 35% of the samples. In the study of nightly oxygen intervention, when comparing placebo and oxygen, half of the samples showed a significant down-ward change and the other half a significant up-ward change measuring either of the miRNA markers. Samples that had a downward change in the miRNA marker following either intervention originated from patients who had a significantly higher 6-min-walking-distance at baseline (mean difference of 90 m or 80 m following exercise or oxygen intervention, respectively) when compared to samples that had an upward change in the miRNA marker. Conclusion: These natural animal model and human sample studies further highlight the utility of miRNAs as future biomarkers. The different directional changes of the miRNA markers following supervised exercise training or nightly oxygen intervention could indicate different PAH molecular pathomechanisms (endotypes). Further studies are needed to test this idea.

12.
Vet Clin Pathol ; 45(3): 495-500, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27571570

ABSTRACT

A 6-year-old, male castrated, mixed-breed dog was referred to the James L. Voss Veterinary Teaching Hospital at Colorado State University for bicavitary effusion. On examination, the dog was tachycardic and tachypneic with bilaterally decreased lung sounds. Thoracic and abdominal ultrasonic examination revealed pleural and peritoneal effusions, which were aspirated and submitted for fluid analysis and cytology. Both cavity fluids were classified as exudates with a large population of vacuolated mononuclear cells. Multiplex immunocytochemistry (ICC) for cytokeratin and vimentin demonstrated exclusively cytokeratin expression, indicating these cells were of epithelial origin. A full diagnostic evaluation was performed, including CBC, clinical chemistry, a pet-side test for heartworm disease, ehrlichiosis, Lyme disease, and anaplasmosis, imaging modalities of thorax, abdomen, and heart, urinalysis, and fine-needle aspirations of spleen, liver, and popliteal lymph nodes. The dog was diagnosed with pleural and peritoneal carcinoma with presumed carcinomatosis. A single dose of intracavitary carboplatin was administered before discharge, and over a period of 2 weeks, 5 thoracocenteses were performed. A subcutaneous mass was noted at a thoracocentesis site one week after initial presentation. Cytology of the mass was consistent with carcinoma, and neoplastic seeding of the tumor cells from the thoracocentesis was suspected. The dog was euthanized 15 days after the first visit, and a necropsy was performed. Findings were consistent with carcinomatosis secondary to anaplastic pulmonary carcinoma with transient subcutaneous seeding of neoplastic cells during routine thoracocentesis. This case demonstrates the utility of multiplex ICC in the clinical setting.


Subject(s)
Carcinoma/veterinary , Dog Diseases/diagnosis , Dogs , Lung Neoplasms/veterinary , Neoplasm Seeding , Animals , Biopsy, Fine-Needle , Cytodiagnosis , Immunohistochemistry , Lymph Nodes , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...