Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cryobiology ; 114: 104842, 2024 03.
Article in English | MEDLINE | ID: mdl-38158172

ABSTRACT

In clinical practice, donor hearts are transported on ice prior to transplant and discarded if cold ischemia time exceeds ∼5 h. Methods to extend these preservation times are critically needed, and ideally, this storage time would extend indefinitely, enabling improved donor-to-patient matching, organ utilization, and immune tolerance induction protocols. Previously, we demonstrated successful vitrification and rewarming of whole rat hearts without ice formation by perfusion-loading a cryoprotective agent (CPA) solution prior to vitrification. However, these hearts did not recover any beating even in controls with CPA loading/unloading alone, which points to the chemical toxicity of the cryoprotective solution (VS55 in Euro-Collins carrier solution) as the likely culprit. To address this, we compared the toxicity of another established CPA cocktail (VEG) to VS55 using ex situ rat heart perfusion. The CPA exposure time was 150 min, and the normothermic assessment time was 60 min. Using Celsior as the carrier, we observed partial recovery of function (atria-only beating) for both VS55 and VEG. Upon further analysis, we found that the VEG CPA cocktail resulted in 50 % lower LDH release than VS55 (N = 4, p = 0.017), suggesting VEG has lower toxicity than VS55. Celsior was a better carrier solution than alternatives such as UW, as CPA + Celsior-treated hearts spent less time in cardiac arrest (N = 4, p = 0.029). While we showed substantial improvement in cardiac function after exposure to vitrifiable concentrations of CPA by improving both the CPA and carrier solution formulation, further improvements will be required before we achieve healthy cryopreserved organs for transplant.


Subject(s)
Heart Transplantation , Organ Preservation Solutions , Animals , Rats , Cryopreservation/methods , Cryoprotective Agents/toxicity , Heart Transplantation/methods , Ice , Organ Preservation Solutions/pharmacology , Tissue Donors
2.
Protein Eng Des Sel ; 342021 02 15.
Article in English | MEDLINE | ID: mdl-34935952

ABSTRACT

Cellulases are largely afflicted by inhibition from their reaction products, especially at high-substrate loading, which represents a major challenge for biomass processing. This challenge was overcome for endoglucanase 1 (E1) from Acidothermus cellulolyticus by identifying a large conformational change involving distal residues upon binding cellobiose. Having introduced alanine substitutions at each of these residues, we identified several mutations that reduced cellobiose inhibition of E1, including W212A, W213A, Q247A, W249A and F250A. One of the mutations (W212A) resulted in a 47-fold decrease in binding affinity of cellobiose as well as a 5-fold increase in the kcat. The mutation further increased E1 activity on Avicel and dilute-acid treated corn stover and enhanced its productivity at high-substrate loadings. These findings were corroborated by funnel metadynamics, which showed that the W212A substitution led to reduced affinity for cellobiose in the +1 and +2 binding sites due to rearrangement of key cellobiose-binding residues.


Subject(s)
Cellulase , Cellulases , Actinobacteria , Catalytic Domain , Cellobiose
SELECTION OF CITATIONS
SEARCH DETAIL
...