Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5692, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38971812

ABSTRACT

Cluster formation of microscopic swimmers is key to the formation of biofilms and colonies, efficient motion and nutrient uptake, but, in the absence of other interactions, requires high swimmer concentrations to occur. Here we experimentally and numerically show that cluster formation can be dramatically enhanced by an anisotropic swimmer shape. We analyze a class of model microswimmers with a shape that can be continuously tuned from spherical to bent and straight rods. In all cases, clustering can be described by Michaelis-Menten kinetics governed by a single scaling parameter that depends on particle density and shape only. We rationalize these shape-dependent dynamics from the interplay between interlocking probability and cluster stability. The bent rod shape promotes assembly in an interlocking fashion even at vanishingly low particle densities and we identify the most efficient shape to be a semicircle. Our work provides key insights into how shape can be used to rationally design out-of-equilibrium self-organization, key to creating active functional materials and processes that require two-component assembly with high fidelity.

2.
Soft Matter ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38868959

ABSTRACT

Active colloidal microswimmers serve as archetypical active fluid systems, and as models for biological swimmers. Here, by studying in detail their velocity traces, we find robust power-law intermittency with system-dependent exponential cut off. We model the intermittent motion by an interplay of the field gradient-dependent active force, which depends on a fluid gradient and is reduced when the swimmer moves, and the locally fluctuating hydrodynamic drag, that is set by the wetting properties of the substrate. The model closely describes the velocity distributions of two disparate swimmer systems: AC field activated and catalytic swimmers. The generality is highlighted by the collapse of all data in a single master curve, suggesting the applicability to further systems, both synthetic and biological.

3.
Phys Rev Lett ; 132(7): 078202, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38427878

ABSTRACT

Floppy microscale spring networks are widely studied in theory and simulations, but no well-controlled experimental system currently exists. Here, we show that square lattices consisting of colloid-supported lipid bilayers functionalized with DNA linkers act as microscale floppy spring networks. We extract their normal modes by inverting the particle displacement correlation matrix, showing the emergence of a spectrum of soft modes with low effective stiffness in addition to stiff modes that derive from linker interactions. Evaluation of the softest mode, a uniform shear mode, reveals that shear stiffness decreases with lattice size. Experiments match well with Brownian particle simulations, and we develop a theoretical description based on mapping interactions onto a linear response model to describe the modes. Our results reveal the importance of entropic steric effects and can be used for developing reconfigurable materials at the colloidal length scale.

4.
Biophys J ; 123(3): 307-316, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38158654

ABSTRACT

Many cell functions require a concerted effort from multiple membrane proteins, for example, for signaling, cell division, and endocytosis. One contribution to their successful self-organization stems from the membrane deformations that these proteins induce. While the pairwise interaction potential of two membrane-deforming spheres has recently been measured, membrane-deformation-induced interactions have been predicted to be nonadditive, and hence their collective behavior cannot be deduced from this measurement. We here employ a colloidal model system consisting of adhesive spheres and giant unilamellar vesicles to test these predictions by measuring the interaction potential of the simplest case of three membrane-deforming, spherical particles. We quantify their interactions and arrangements and, for the first time, experimentally confirm and quantify the nonadditive nature of membrane-deformation-induced interactions. We furthermore conclude that there exist two favorable configurations on the membrane: (1) a linear and (2) a triangular arrangement of the three spheres. Using Monte Carlo simulations, we corroborate the experimentally observed energy minima and identify a lowering of the membrane deformation as the cause for the observed configurations. The high symmetry of the preferred arrangements for three particles suggests that arrangements of many membrane-deforming objects might follow simple rules.


Subject(s)
Membrane Proteins , Monte Carlo Method
5.
ACS Nano ; 17(13): 12234-12246, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37363931

ABSTRACT

Colloidal molecules are ideal model systems for mimicking real molecules and can serve as versatile building blocks for the bottom-up self-assembly of flexible and smart materials. While most colloidal molecules are rigid objects, the development of colloidal joints has made it possible to endow them with conformational flexibility. However, their unrestricted range of motion does not capture the limited movement and bond directionality that is instead typical of real molecules. In this work, we create flexible colloidal molecules with an in situ controllable motion range and bond directionality by assembling spherical particles onto cubes functionalized with complementary surface-mobile DNA. By varying the sphere-to-cube size ratio, we obtain colloidal molecules with different coordination numbers and find that they feature a constrained range of motion above a critical size ratio. Using theory and simulations, we show that the particle shape together with the multivalent bonds creates an effective free-energy landscape for the motion of the sphere on the surface of the cube. We quantify the confinement of the spheres on the surface of the cube and the probability to change facet. We find that temperature can be used as an extra control parameter to switch in situ between full and constrained flexibility. These flexible colloidal molecules with a temperature switching motion range can be used to investigate the effect of directional yet flexible bonds in determining their self-assembly and phase behavior, and may be employed as constructional units in microrobotics and smart materials.

6.
Nano Lett ; 23(10): 4267-4273, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37141427

ABSTRACT

Endocytosis is a key cellular process involved in the uptake of nutrients, pathogens, or the therapy of diseases. Most studies have focused on spherical objects, whereas biologically relevant shapes can be highly anisotropic. In this letter, we use an experimental model system based on Giant Unilamellar Vesicles (GUVs) and dumbbell-shaped colloidal particles to mimic and investigate the first stage of the passive endocytic process: engulfment of an anisotropic object by the membrane. Our model has specific ligand-receptor interactions realized by mobile receptors on the vesicles and immobile ligands on the particles. Through a series of experiments, theory, and molecular dynamics simulations, we quantify the wrapping process of anisotropic dumbbells by GUVs and identify distinct stages of the wrapping pathway. We find that the strong curvature variation in the neck of the dumbbell as well as membrane tension are crucial in determining both the speed of wrapping and the final states.

7.
Phys Rev E ; 107(3-1): 034602, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37072967

ABSTRACT

Ring, or cyclic, polymers have unique properties compared to linear polymers, due to their topologically closed structure that has no beginning or end. Experimental measurements on the conformation and diffusion of molecular ring polymers simultaneously are challenging due to their inherently small size. Here, we study an experimental model system for cyclic polymers, that consists of rings of flexibly linked micron-sized colloids with n=4-8 segments. We characterize the conformations of these flexible colloidal rings and find that they are freely jointed up to steric restrictions. We measure their diffusive behavior and compare it to hydrodynamic simulations. Interestingly, flexible colloidal rings have a larger translational and rotational diffusion coefficient compared to colloidal chains. In contrast to chains, their internal deformation mode shows slower fluctuations for n≲8 and saturates for higher values of n. We show that constraints stemming from the ring structure cause this decrease in flexibility for small n and infer the expected scaling of the flexibility as function of ring size. Our findings could have implications for the behavior of both synthetic and biological ring polymers, as well as for the dynamic modes of floppy colloidal materials.

8.
J Colloid Interface Sci ; 629(Pt A): 322-333, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36081211

ABSTRACT

HYPOTHESIS: Colloidal molecules with anisotropic shapes and interactions are powerful model systems for deciphering the behavior of real molecules and building units for creating materials with designed properties. While many strategies for their assembly have been developed, they typically yield a broad distribution or are limited to a specific type. We hypothesize that the shape and relative sizes of colloidal particles can be exploited to efficiently direct their assembly into colloidal molecules of desired valence. EXPERIMENTS: We exploit electrostatic self-assembly of negatively charged spheres made from either polystyrene or silica onto positively charged hematite cubes. We thoroughly analyze the role of the shape and size ratio of particles on the cluster size and yield of colloidal molecules. FINDINGS: Using a combination of experiments and simulations, we demonstrate that cubic particle shape is crucial to generate high yields of distinct colloidal molecules over a wide variety of size ratios. We find that electrostatic repulsion between the satellite spheres is important to leverage the templating effect of the cubes, leading the spheres to preferentially assemble on the facets rather than the edges and corners of the cube. The sixfold symmetry of cubes favors the assembly of molecules with six, four, and two satellite spheres at appropriate size ratios and interaction strength. Furthermore, we reveal that our protocol is not affected by the specific choice of the material of the colloidal particles. Finally, we show that the permanent magnetic dipole moment of the hematite cubes can be utilized to separate colloidal molecules from non-assembled satellite particles. Our simple and effective strategy might be extended to other templating particle shapes, thereby greatly expanding the library of colloidal molecules that can be achieved with high yield and purity.


Subject(s)
Colloids , Polystyrenes , Ferric Compounds , Silicon Dioxide
9.
Nat Commun ; 13(1): 1772, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35365633

ABSTRACT

Cooperative motion in biological microswimmers is crucial for their survival as it facilitates adhesion to surfaces, formation of hierarchical colonies, efficient motion, and enhanced access to nutrients. Here, we confine synthetic, catalytic microswimmers along one-dimensional paths and demonstrate that they too show a variety of cooperative behaviours. We find that their speed increases with the number of swimmers, and that the activity induces a preferred distance between swimmers. Using a minimal model, we ascribe this behavior to an effective activity-induced potential that stems from a competition between chemical and hydrodynamic coupling. These interactions further induce active self-assembly into trains where swimmers move at a well-separated, stable distance with respect to each other, as well as compact chains that can elongate, break-up, become immobilized and remobilized. We identify the crucial role that environment morphology and swimmer directionality play on these highly dynamic chain behaviors. These activity-induced interactions open the door toward exploiting cooperation for increasing the efficiency of microswimmer motion, with temporal and spatial control, thereby enabling them to perform intricate tasks inside complex environments.


Subject(s)
Hydrodynamics , Motion
10.
ACS Nano ; 16(2): 2471-2480, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35080387

ABSTRACT

Colloidal molecules are designed to mimic their molecular analogues through their anisotropic shape and interactions. However, current experimental realizations are missing the structural flexibility present in real molecules thereby restricting their use as model systems. We overcome this limitation by assembling reconfigurable colloidal molecules from silica particles functionalized with mobile DNA linkers in high yields. We achieve this by steering the self-assembly pathway toward the formation of finite-sized clusters by employing high number ratios of particles functionalized with complementary DNA strands. The size ratio of the two species of particles provides control over the overall cluster size, i.e., the number of bound particles N, as well as the degree of reconfigurability. The bond flexibility provided by the mobile linkers allows the successful assembly of colloidal clusters with the geometrically expected maximum number of bound particles and shape. We quantitatively examine the self-assembly dynamics of these flexible colloidal molecules by a combination of experiments, agent-based simulations, and an analytical model. Our "flexible colloidal molecules" are exciting building blocks for investigating and exploiting the self-assembly of complex hierarchical structures, photonic crystals, and colloidal metamaterials.


Subject(s)
Colloids , Photons , Anisotropy , Colloids/chemistry
11.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Article in English | MEDLINE | ID: mdl-34465623

ABSTRACT

Reliably distinguishing between cells based on minute differences in receptor density is crucial for cell-cell or virus-cell recognition, the initiation of signal transduction, and selective targeting in directed drug delivery. Such sharp differentiation between different surfaces based on their receptor density can only be achieved by multivalent interactions. Several theoretical and experimental works have contributed to our understanding of this "superselectivity." However, a versatile, controlled experimental model system that allows quantitative measurements on the ligand-receptor level is still missing. Here, we present a multivalent model system based on colloidal particles equipped with surface-mobile DNA linkers that can superselectively target a surface functionalized with the complementary mobile DNA-linkers. Using a combined approach of light microscopy and Foerster resonance energy transfer (FRET), we can directly observe the binding and recruitment of the ligand-receptor pairs in the contact area. We find a nonlinear transition in colloid-surface binding probability with increasing ligand or receptor concentration. In addition, we observe an increased sensitivity with weaker ligand-receptor interactions, and we confirm that the timescale of binding reversibility of individual linkers has a strong influence on superselectivity. These unprecedented insights on the ligand-receptor level provide dynamic information into the multivalent interaction between two fluidic membranes mediated by both mobile receptors and ligands and will enable future work on the role of spatial-temporal ligand-receptor dynamics on colloid-surface binding.


Subject(s)
Colloids/chemistry , Drug Delivery Systems , DNA/chemistry , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemistry , Ligands , Models, Chemical , Protein Binding , Surface Properties
12.
Phys Rev Lett ; 125(23): 238001, 2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33337216

ABSTRACT

Microswimmers typically move near walls, which can strongly influence their motion. However, direct experimental measurements of swimmer-wall separation remain elusive to date. Here, we determine this separation for model catalytic microswimmers from the height dependence of the passive component of their mean-squared displacement. We find that swimmers exhibit "ypsotaxis," a tendency to assume a fixed height above the wall for a range of salt concentrations, swimmer surface charges, and swimmer sizes. Our findings indicate that ypsotaxis is activity induced, posing restrictions on future modeling of their still-debated propulsion mechanism.

13.
Soft Matter ; 16(46): 10463-10469, 2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33057565

ABSTRACT

Synthetic microswimmers are widely employed model systems in the studies of out-of-equilibrium phenomena. Unlike biological microswimmers which naturally occur in various shapes and forms, synthetic microswimmers have so far been limited almost exclusively to spherical shapes. Here, we exploit 3D printing to produce microswimmers with complex shapes in the colloidal size regime. We establish the flexibility of 3D printing by two-photon polymerisation to produce particles smaller than 10 microns with a high-degree of shape complexity. We further demonstrate that 3D printing allows control over the location of the active site through orienting the particles in different directions during printing. We verify that particles behave colloidally by imaging their motion in the passive and active states and by investigating their mean square displacement. In addition, we find that particles exhibit shape-dependant behavior, thereby demonstrating the potential of our method to launch a wide-range of in-depth studies into shape-dependent active motion and behaviour.

14.
Nat Commun ; 11(1): 4314, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32887878

ABSTRACT

Previous studies on the phase behaviour of multicomponent lipid bilayers found an intricate interplay between membrane geometry and its composition, but a fundamental understanding of curvature-induced effects remains elusive. Thanks to a combination of experiments on lipid vesicles supported by colloidal scaffolds and theoretical work, we demonstrate that the local geometry and global chemical composition of the bilayer determine both the spatial arrangement and the amount of mixing of the lipids. In the mixed phase, a strong geometrical anisotropy can give rise to an antimixed state, where the lipids are mixed, but their relative concentration varies across the membrane. After phase separation, the bilayer organizes in multiple lipid domains, whose location is pinned in specific regions, depending on the substrate curvature and the bending rigidity of the lipid domains. Our results provide critical insights into the phase separation of cellular membranes and, more generally, two-dimensional fluids on curved substrates.


Subject(s)
Cell Membrane/chemistry , Lipid Bilayers/chemistry , Membrane Microdomains , Liposomes/chemistry
15.
Soft Matter ; 16(21): 4932-4940, 2020 Jun 07.
Article in English | MEDLINE | ID: mdl-32435786

ABSTRACT

Experiments on supported lipid bilayers featuring liquid ordered/disordered domains have shown that the spatial arrangement of the lipid domains and their chemical composition are strongly affected by the curvature of the substrate. Furthermore, theoretical predictions suggest that both these effects are intimately related with the closed topology of the bilayer. In this work, we test this hypothesis by fabricating supported membranes consisting of colloidal particles of various shapes lying on a flat substrate. A single lipid bilayer coats both colloids and substrate, allowing local lipid exchange between them, thus rendering the system thermodynamically open, i.e. able to exchange heat and molecules with an external reservoir in the neighborhood of the colloid. By reconstructing the Gibbs phase diagram for this system, we demonstrate that the free-energy landscape is directly influenced by the geometry of the colloid. In addition, we find that local lipid exchange enhances the pinning of the liquid disordered phase in highly curved regions. This allows us to provide estimates of the bending moduli difference of the domains. Finally, by combining experimental and numerical data, we forecast the outcome of possible experiments on catenoidal and conical necks and show that these geometries could greatly improve the precision of the current estimates of the bending moduli.


Subject(s)
Lipid Bilayers/chemistry , Colloids/chemistry , Thermodynamics
16.
Phys Rev Lett ; 124(4): 048002, 2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32058791

ABSTRACT

Catalytic colloidal swimmers that propel due to self-generated fluid flows exhibit strong affinity for surfaces. Here, we report experimental measurements of a significant dependence of such microswimmers' speed on the nearby substrate material. We find that speeds scale with the solution contact angle θ on the substrate, which relates to the associated hydrodynamic substrate slip length, as V∝(cosθ+1)^{-3/2}. We show that such dependence can be attributed to osmotic coupling between swimmers and substrate. Our work points out that hydrodynamic slip at nearby walls, though often unconsidered, can significantly impact microswimmer self-propulsion.

17.
Phys Rev E ; 102(6-1): 062608, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33466010

ABSTRACT

Geometric confinement strongly influences the behavior of microparticles in liquid environments. However, to date, nonspherical particle behaviors close to confining boundaries, even as simple as planar walls, remain largely unexplored. Here, we measure the height distribution and orientation of colloidal dumbbells above walls by means of digital in-line holographic microscopy. We find that while larger dumbbells are oriented almost parallel to the wall, smaller dumbbells of the same material are surprisingly oriented at preferred angles. We determine the total height-dependent force acting on the dumbbells by considering gravitational effects and electrostatic particle-wall interactions. Our modeling reveals that at specific heights both net forces and torques on the dumbbells are simultaneously below the thermal force and energy, respectively, which makes the observed orientations possible. Our results highlight the rich near-wall dynamics of nonspherical particles and can further contribute to the development of quantitative frameworks for arbitrarily shaped microparticle dynamics in confinement.

18.
Phys Rev E ; 100(3-1): 032604, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31639923

ABSTRACT

We study the global influence of curvature on the free energy landscape of two-dimensional binary mixtures confined on closed surfaces. Starting from a generic effective free energy, constructed on the basis of symmetry considerations and conservation laws, we identify several model-independent phenomena, such as a curvature-dependent line tension and local shifts in the binodal concentrations. To shed light on the origin of the phenomenological parameters appearing in the effective free energy, we further construct a lattice-gas model of binary mixtures on nontrivial substrates, based on the curved-space generalization of the two-dimensional Ising model. This allows us to decompose the interaction between the local concentration of the mixture and the substrate curvature into four distinct contributions, as a result of which the phase diagram splits into critical subdiagrams. The resulting free energy landscape can admit, as stable equilibria, strongly inhomogeneous mixed phases, which we refer to as "antimixed" states below the critical temperature. We corroborate our semianalytical findings with phase-field numerical simulations on realistic curved lattices. Despite this work being primarily motivated by recent experimental observations of multicomponent lipid vesicles supported by colloidal scaffolds, our results are applicable to any binary mixture confined on closed surfaces of arbitrary geometry.

19.
Soft Matter ; 15(6): 1345-1360, 2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30565635

ABSTRACT

The use of colloid supported lipid bilayers (CSLBs) has recently been extended to create colloidal joints, that enable the assembly of structures with internal degrees of flexibility, and to study lipid membranes on curved and closed geometries. These novel applications of CSLBs rely on previously unappreciated properties: the simultaneous fluidity of the bilayer, lateral mobility of inserted (linker) molecules and colloidal stability. Here we characterize every step in the manufacturing of CSLBs in view of these requirements using confocal microscopy and fluorescence recovery after photobleaching (FRAP). Specifically, we have studied the influence of different particle properties (roughness, surface charge, chemical composition, polymer coating) on the quality and mobility of the supported bilayer. We find that the insertion of lipopolymers in the bilayer can affect its homogeneity and fluidity. We improve the colloidal stability by inserting lipopolymers or double-stranded inert DNA into the bilayer. We include surface-mobile DNA linkers and use FRAP to characterize their lateral mobility both in their freely diffusive and bonded state. Finally, we demonstrate the self-assembly of flexibly linked structures from the CSLBs modified with surface-mobile DNA linkers. Our work offers a collection of experimental tools for working with CSLBs in applications ranging from controlled bottom-up self-assembly to model membrane studies.

20.
J Phys Condens Matter ; 30(9): 094005, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29376836

ABSTRACT

Colloids coated with lipid membranes have been widely employed for fundamental studies of lipid membrane processes, biotechnological applications such as drug delivery and biosensing, and more recently, for self-assembly. The latter has been made possible by inserting DNA oligomers with covalently linked hydrophobic anchors into the membrane. The lateral mobility of the DNA linkers on micrometer-sized droplets and solid particles has opened the door to creating structures with unprecedented structural flexibility. Here, we investigate micro-emulsions of TPM (3-(trimethoxysilyl)propyl methacrylate) as a platform for lipid monolayers and further functionalization with proteins and DNA oligonucleotides. TPM droplets can be produced with a narrow size distribution and are polymerizable, thus providing supports for model lipid membranes with controlled size and curvature. With fluorescence recovery after photobleaching, we observed that droplet-attached lipids, NeutrAvidin proteins, as well as DNA oligonucleotides all show mobility on the surface. We explored the assembly of micron-sized particles on TPM-droplets by exploiting either avidin-biotin interactions or double-stranded DNA with complementary single-stranded end groups. While the single molecules are mobile, the particles that are attached to them are not. We propose that this is caused by the heterogeneous nature of emulsified TPM, which forms an oligomer network that limits the collective motion of linkers, but allows the surface mobility of individual molecules.


Subject(s)
Methacrylates/chemistry , Organosilicon Compounds/chemistry , Colloids , DNA/chemistry , Emulsions , Lipids/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...