Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Environ Manage ; 153: 50-9, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25657061

ABSTRACT

Decades of farming and fertilization of farm land in the unglaciated/Driftless Area (DA) of southwestern Wisconsin have resulted in the build-up of P and to some extent, N, in soils. This build-up, combined with steep topography and upper and lower elevation farming (tiered farming), exacerbates problems associated with runoff and nutrient transport in these landscapes. Use of an at-grade stabilization structure (AGSS) as an additional conservation practice to contour strip cropping and no-tillage, proved to be successful in reducing organic and sediment bound N and P within an agricultural watershed located in the DA. The research site was designed as a paired watershed study, in which monitoring stations were installed on the perennial streams draining both control and treatment watersheds. Linear mixed effects statistics were used to determine significant changes in nutrient concentrations before and after installation of an AGSS. Results indicate a significant reduction in storm event total P (TP) concentrations (P = 0.01) within the agricultural watershed after installation of the AGSS, but not total dissolved P (P = 0.23). This indicates that the reduction in P concentration is that of the particulate form. Storm event organic N concentrations were also significantly reduced (P = 0.03) after the AGSS was installed. We conclude that AGSS was successful in reducing the organic and sediment bound N and P concentrations in runoff waters thus reducing their delivery to nearby surface waters.


Subject(s)
Fresh Water/analysis , Nitrogen/analysis , Phosphorus/analysis , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/prevention & control , Water Quality , Agriculture , Wisconsin
2.
Ground Water ; 50(2): 308-18, 2012.
Article in English | MEDLINE | ID: mdl-21707615

ABSTRACT

Irrigated agriculture has expanded greatly in the water-rich U.S. northern lake states during the past half century. Source water there is usually obtained from glacial aquifers strongly connected to surface waters, so irrigation has a potential to locally decrease base flows in streams and water levels in aquifers, lakes, and wetlands. During the nascent phase of the irrigation expansion, water availability was explored in works of some fame in the Wisconsin central sands by Weeks et al. (1965) on the Little Plover River and Weeks and Stangland (1971) on "headwater area" streams and lakes. Four decades later, and after irrigation has grown to a dominant landscape presence, we revisited irrigation effects on central sands hydrology. Irrigation effects have been substantial, on average decreasing base flows by a third or more in many stream headwaters and diminishing water levels by more than a meter in places. This explains why some surface waters have become flow and stage impaired, sometimes to the point of drying, with attendant losses of aquatic ecosystems. Irrigation exerts its effects by increasing evapotranspiration by an estimated 45 to 142 mm/year compared with pre-irrigated land cover. We conclude that irrigation water availability in the northern lake states and other regions with strong groundwater-surface water connections is tied to concerns for surface water health, requiring a focus on managing the upper few meters of aquifers on which surface waters depend rather than the depletability of an aquifer.


Subject(s)
Agricultural Irrigation , Groundwater , Water Supply , Environmental Monitoring , Water Movements , Wisconsin
3.
J Environ Qual ; 37(4): 1456-67, 2008.
Article in English | MEDLINE | ID: mdl-18574177

ABSTRACT

In this study, we used chlorofluorocarbon (CFC) age-dating to investigate the geochemistry of N enrichment within a bedrock aquifer depth profile beneath a south central Wisconsin agricultural landscape. Measurement of N(2)O and excess N(2) allowed us to reconstruct the total NO(3)(-) and total nitrogen (TN) leached to ground water and was essential for tracing the separate influences of soil nitrification and ground water denitrification in the collateral geochemical chronology. We identify four geochemical impacts due to a steady ground water N enrichment trajectory (39 +/- 2.2 micromol L(-1) yr(-1), r(2) = 0.96) over two decades (1963-1985) of rapidly escalating N use. First, as a by-product of soil nitrification, N(2)O entered ground water at a stable (r(2) = 0.99) mole ratio of 0.24 +/- 0.007 mole% (N(2)O-N/NO(3)-N). The gathering of excess N(2)O in ground water is a potential concern relative to greenhouse gas emissions and stratospheric ozone depletion after it discharges to surface water. Second, excess N(2) measurements revealed that NO(3)(-) was a prominent, mobile, labile electron acceptor comparable in importance to O(2.) Denitrification transformed 36 +/- 15 mole% (mol mol(-1) x 100) of the total N within the profile to N(2) gas, delaying exceedance of the NO(3)(-) drinking water standard by approximately 6 yr. Third, soil acids produced from nitrification substantially increased the concentrations of major, dolomitic ions (Ca, Mg, HCO(3)(-)) in ground water relative to pre-enrichment conditions. By 1985, concentrations approximately doubled; by 2006, CFC age-date projections suggest concentrations may have tripled. Finally, the nitrification induced mobilization of Ca may have caused a co-release of P from Ca-rich soil surfaces. Dissolved P increased from an approximate background value of 0.02 mg L(-1) in 1963 to 0.07 mg L(-1) in 1985. The CFC age-date projections suggest the concentration could have reached 0.11 mg L(-1) in ground water recharge by 2006. These results highlight an intersection of the N and P cycles potentially important for managing the quality of ground water discharged to surface water.


Subject(s)
Agriculture , Geology , Nitrogen , Water/chemistry , Geological Phenomena , Wisconsin
SELECTION OF CITATIONS
SEARCH DETAIL