Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Econ Entomol ; 114(5): 1950-1974, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34516634

ABSTRACT

Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) also known as spotted-wing drosophila (SWD), is a pest native to Southeast Asia. In the last few decades, the pest has expanded its range to affect all major European and American fruit production regions. SWD is a highly adaptive insect that is able to disperse, survive, and flourish under a range of environmental conditions. Infestation by SWD generates both direct and indirect economic impacts through yield losses, shorter shelf life of infested fruit, and increased production costs. Fresh markets, frozen berries, and fruit export programs have been impacted by the pest due to zero tolerance for fruit infestation. As SWD control programs rely heavily on insecticides, exceedance of maximum residue levels (MRLs) has also resulted in crop rejections. The economic impact of SWD has been particularly severe for organic operations, mainly due to the limited availability of effective insecticides. Integrated pest management (IPM) of SWD could significantly reduce chemical inputs but would require substantial changes to horticultural management practices. This review evaluates the most promising methods studied as part of an IPM strategy against SWD across the world. For each of the considered techniques, the effectiveness, impact, sustainability, and stage of development are discussed.


Subject(s)
Drosophila , Insecticides , Animals , Fruit , Insect Control
2.
J Econ Entomol ; 113(5): 2427-2435, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32914843

ABSTRACT

We evaluated the effect of postharvest cold storage temperature (0.0-2.2°C) and duration (3-5 d) on pupal emergence of single life stage populations of laboratory-generated Drosophila suzukii (Matsumura) and mixed-age populations collected in the field from blackberries, blueberries, strawberries, and raspberries. For field-infested fruit, cold storage at any temperature and duration resulted in less pupal emergence compared with the control held at 20°C, but D. suzukii subjected to higher temperatures and shorter storage durations in caneberries had higher survival. When a single life stage of D. suzukii was exposed to cold storage, pupal emergence was significantly reduced across all fruit types held at 0°C and for most life stages and fruit types held at 1.5 and 2.2°C, dependent on the substrate. Freshly laid eggs exposed to cold storage produced the lowest pupal emergence. Our results suggest using cold storage treatment is an effective postharvest management strategy for small-fruit growers to use on-farm as part of an integrated program to manage D. suzukii infestation. An economic assessment was made to examine the profit implications of an investment in cold storage units to counter pest pressure. Results suggest that investment in a cold storage unit would breakeven in about 4 yr. On farms that already have cold storage installed, we estimated a $0.11/kg decrease in blueberry market price for holding fruit for 3 d. Together, this cost assessment will provide growers with the knowledge to make decisions based on infestation risk and the seasonal sale price of blueberries.


Subject(s)
Blueberry Plants , Rubus , Animals , Drosophila , Fruit , Pupa
3.
PLoS One ; 13(1): e0190763, 2018.
Article in English | MEDLINE | ID: mdl-29293663

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0180729.].

4.
J Anim Ecol ; 87(2): 464-477, 2018 03.
Article in English | MEDLINE | ID: mdl-28378393

ABSTRACT

The pea aphid, Acyrthosiphon pisum, maintains extreme variation in resistance to its most common parasitoid wasp enemy, Aphidius ervi, which is sourced from two known mechanisms: protective bacterial symbionts, most commonly Hamiltonella defensa, or endogenously encoded defences. We have recently found that individual aphids may employ each defence individually, occasionally both defences together, or neither. In field populations, Hamiltonella-infected aphids are found at low to moderate frequencies and while less is known about the frequency of resistant genotypes, they show up less often than susceptible genotypes in field collections. To better understand these patterns, we sought to compare the strengths and costs of both types of defence, individually and together, in order to elucidate the selective pressures that maintain multi-modal defence mechanisms or that may favour one over the other. We experimentally infected five aphid genotypes (two lowly and three highly resistant), each with two symbiont strains, Hamiltonella-APSE8 (moderate protection) and Hamiltonella-APSE3 (high protection). This resulted in three sublines per genotype: uninfected, +APSE8 and +APSE3. Each of the 15 total sublines was first subjected to a parasitism assay to determine its resistance phenotype and in a second experiment, a subset was chosen to compare fitness (fecundity and survivorship) in the presence and absence of parasitism. In susceptible aphid genotypes, parasitized sublines infected with Hamiltonella generally showed increased protection with direct fitness benefits, but clear infection costs to fitness in the absence of parasitism. In resistant genotypes, Hamiltonella infection rarely conferred additional protection, often further reduced fecundity and survivorship when enemy challenged, and resulted in constitutive fitness costs in the absence of parasitism. We also identified strong aphid genotype × symbiont-strain interactions, such that the best defensive strategy against parasitoids varied for each aphid genotype; one performed best with no protective symbionts, the others with particular strains of Hamiltonella. This surprising variability in outcomes helps explain why Hamiltonella infection frequencies are often intermediate and do not strongly track parasitism frequencies in field populations. We also find that variation in endogenous traits, such as resistance, among host genotypes may offer redundancy and generally limit the invasion potential of mutualistic microbes in insects.


Subject(s)
Aphids , Enterobacteriaceae/physiology , Genes, Insect/genetics , Host Microbial Interactions/immunology , Wasps/physiology , Animals , Aphids/genetics , Aphids/immunology , Aphids/microbiology , Aphids/parasitology , Fertility , Genotype , Wasps/microbiology
5.
PLoS One ; 12(7): e0180729, 2017.
Article in English | MEDLINE | ID: mdl-28700614

ABSTRACT

Insects use endogenous mechanisms and infection with protective symbionts to thwart attacks from natural enemies. Defenses that target specific enemies, however, potentially mediate competition between rivals and thereby impact community composition. Following its introduction to North America to control pea aphids (Acyrthosiphon pisum), the parasitoid Aphidius ervi competitively displaced other parasitoids, except for the native Praon pequodorum. The pea aphid exhibits tremendous clonal variation in resistance to A. ervi, primarily through infection with the heritable bacterial symbiont Hamiltonella defensa, although some symbiont-free aphid genotypes encode endogenous resistance. Interestingly, H. defensa strains and aphid genotypes that protect against A. ervi, provide no protection against the closely related, P. pequodorum. Given the specificity of aphid defenses, we hypothesized that aphid resistance traits may contribute to the continued persistence of P. pequodorum. We conducted multiparasitism assays to determine whether aphid resistance traits mediate internal competition between these two solitary parasitoid species, but found this was not the case; P. pequodorum was the successful internal competitor across lines varying in susceptibility to A. ervi. Next, to determine whether resistance traits influence competitive interactions resulting in the stable persistence of P. pequodorum, we established replicated cages varying in the proportion of resistant aphids and recorded successful parasitism for each wasp species over time. As expected, A. ervi outcompeted P. pequodorum in cages containing only susceptible aphids. However, P. pequodorum not only persisted, but was the superior competitor in populations containing any proportion (20-100%) of resistant aphids (20-100%). Smaller scale, better replicated competition cage studies corroborated this finding, and no-competition and behavioral assays provide insight into the processes mediating competition. Genetic variation, including that acquired via infection with protective symbionts, may provide a supply of hosts susceptible only to particular enemies, mediating competition with effects on community richness and stability.


Subject(s)
Aphids/parasitology , Competitive Behavior , Disease Resistance/immunology , Parasites/physiology , Quantitative Trait, Heritable , Symbiosis/physiology , Analysis of Variance , Animals , Wasps/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...