Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 11: 541, 2020.
Article in English | MEDLINE | ID: mdl-32655483

ABSTRACT

Activation of skeletal muscle contractions require that action potentials can be excited and propagated along the muscle fibers. Recent studies have revealed that muscle fiber excitability is regulated during repeated firing of action potentials by cellular signaling systems that control the function of ion channel that determine the resting membrane conductance (G m ). In fast-twitch muscle, prolonged firing of action potentials triggers a marked increase in G m , reducing muscle fiber excitability and causing action potential failure. Both ClC-1 and KATP ion channels contribute to this G m rise, but the exact molecular regulation underlying their activation remains unclear. Studies in expression systems have revealed that ClC-1 is able to bind adenosine nucleotides, and that low adenosine nucleotide levels result in ClC-1 activation. In three series of experiments, this study aimed to explore whether ClC-1 is also regulated by adenosine nucleotides in native skeletal muscle fibers, and whether the adenosine nucleotide sensitivity of ClC-1 could explain the rise in G m muscle fibers during prolonged action potential firing. First, whole cell patch clamping of mouse muscle fibers demonstrated that ClC-1 activation shifted in the hyperpolarized direction when clamping pipette solution contained 0 mM ATP compared with 5 mM ATP. Second, three-electrode G m measurement during muscle fiber stimulation showed that glycolysis inhibition, with 2-deoxy-glucose or iodoacetate, resulted in an accelerated and rapid >400% G m rise during short periods of repeated action potential firing in both fast-twitch and slow-twitch rat, and in human muscle fibers. Moreover, ClC-1 inhibition with 9-anthracenecarboxylic acid resulted in either an absence or blunted G m rise during action potential firing in human muscle fibers. Third, G m measurement during repeated action potential firing in muscle fibers from a murine McArdle disease model suggest that the rise in G m was accelerated in a subset of fibers. Together, these results are compatible with ClC-1 function being regulated by the level of adenosine nucleotides in native tissue, and that the channel operates as a sensor of skeletal muscle metabolic state, limiting muscle excitability when energy status is low.

2.
Mitochondrion ; 50: 35-41, 2020 01.
Article in English | MEDLINE | ID: mdl-31669236

ABSTRACT

OBJECTIVE: We investigated if Growth and Differentiation Factor 15 (GDF-15) can be used as a biomarker to distinguish patients with mitochondrial myopathy from patients with other myopathies. METHODS: Serum GDF-15 was measured in 28 patients with mitochondrial disease, 24 with metabolic myopathies, 27 with muscular dystrophy and 21 healthy controls. RESULTS AND CONCLUSIONS: Our findings indicate that elevated GDF-15 can distinguish patients with mitochondrial myopathy from other myopathies, including metabolic myopathies. This suggests that increases in GDF-15 is specific to respiratory chain dysfunction rather than general metabolic dysfunction or muscle defect.


Subject(s)
Growth Differentiation Factor 15/blood , Mitochondrial Myopathies/metabolism , Adolescent , Adult , Aged , Biomarkers/blood , Biomarkers/metabolism , Exercise Test , Female , Gene Expression Regulation/physiology , Humans , Male , Middle Aged , Mitochondrial Myopathies/genetics , Oxidative Stress , Pilot Projects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...