Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 47(46): 16461-16473, 2018 Nov 27.
Article in English | MEDLINE | ID: mdl-30406797

ABSTRACT

Aluminium chlorofluoride (ACF) and high-surface aluminium fluoride (HS-AlF3) were analyzed by a set of characterization methods to assess their acidic properties: NH3-TPD, CO adsorption followed by DRIFTS, CD3CN-PAS-FTIR and MAS NMR spectroscopy after 15N-pyridine adsorption. Both catalysts contain very strong and medium-strong Lewis acid sites as confirmed by CO adsorption, in which small differences arise from the morphological properties of each catalyst, with ACF being microporous and HS-AlF3 mesoporous. Shifts of the CO vibration band of up to 77 cm-1 were observed, which account for very strong Lewis acid sites. In addition, very strong Lewis acid sites could be identified by CD3CN-PAS for both catalysts, exhibiting a shift of 95 cm-1 from free nitrile, the highest ever reported for a solid Lewis acid.

2.
Chemistry ; 24(28): 7177-7187, 2018 May 17.
Article in English | MEDLINE | ID: mdl-29480534

ABSTRACT

Anhydrous nanoscopic CuF2 is synthesized from alkoxides Cu(OR)2 (R=Me, tBu) by their reaction either in pure liquid HF at -70 °C, or under solvothermal conditions at 150 °C using excess HF and THF as solvent. Depending on the synthesis method, nanoparticles of sizes between 10 and 100 nm are obtained. The compound is highly hygroscopic and forms different hydrolysis products under moist air, namely CuF2 ⋅2 H2 O, Cu2 (OH)F3 , and Cu(OH)F, of which only the latter is stable at room temperature. CuF2 exhibits an electrochemical plateau at a potential of ≈2.7 V when cycled versus Li in half cell Li-ion batteries, which is attributed to a non-reversible conversion mechanism. The cell capacity in the first cycle depends on the particle size, being 468 mAh g-1 for ≈8 nm crystallite diameter, and 353 mAh g-1 for ≈12 nm crystallite diameter, referred to CuF2 . However, such a high capacity cannot be sustained for several cycles and the capacity rapidly fades out. The cell voltage decreases to ≈2.0 V for CuF2 ⋅2 H2 O, Cu2 (OH)F3 , and Cu(OH)F. As all the compounds studied in this work show irreversible conversion reactions, it can be concluded that copper-based fluorides are unsuitable for Li-ion battery applications.

3.
Dalton Trans ; 46(9): 2925-2936, 2017 Feb 28.
Article in English | MEDLINE | ID: mdl-28197610

ABSTRACT

A universal fast and easy access at room temperature to transparent sols of nanoscopic Eu3+ and Tb3+ doped CaF2, SrF2 and BaF2 particles via the fluorolytic sol-gel synthesis route is presented. Monodisperse quasi-spherical nanoparticles with sizes of 3-20 nm are obtained with up to 40% rare earth doping showing red or green luminescence. In the beginning luminescence quenching effects are only observed for the highest content, which demonstrates the unique and outstanding properties of these materials. From CaF2:Eu10 via SrF2:Eu10 to BaF2:Eu10 a steady increase of the luminescence intensity and lifetime occurs by a factor of ≈2; the photoluminescence quantum yield increases by 29 to 35% due to the lower phonon energy of the matrix. The fast formation process of the particles within fractions of seconds is clearly visualized by exploiting appropriate luminescence processes during the synthesis. Multiply doped particles are also available by this method. Fine tuning of the luminescence properties is achieved by variation of the Ca-to-Sr ratio. Co-doping with Ce3+ and Tb3+ results in a huge increase (>50 times) of the green luminescence intensity due to energy transfer Ce3+ → Tb3+. In this case, the luminescence intensity is higher for CaF2 than for SrF2, due to a lower spatial distance of the rare earth ions.

4.
ACS Appl Mater Interfaces ; 6(22): 19559-65, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25372504

ABSTRACT

Minimizing efficiency losses caused by unwanted light reflection at the interface between lenses, optical instruments and solar cells with the surrounding medium requires antireflective coatings with adequate refractive index and coating thickness. We describe a new type of antireflective coating material with easily and independently tailorable refractive index and coating thickness based on the deposition of colloidal MgF2 nanoparticles. The material synthesis employs micelles of amphiphilic block copolymers as structure directing agent to introduce controlled mesoporosity into MgF2 film. The coatings thickness can be easily adjusted by the applied coating conditions. The coatings refractive index is determined by the materials porosity, which is controlled by the amount of employed pore template. The refractive index can be precisely tuned between 1.23 and 1.11, i.e., in a range that is not accessible to nonporous inorganic materials. Hence, zero reflectance conditions can be established for a wide range of substrate materials.

5.
Inorg Chem ; 47(2): 663-70, 2008 Jan 21.
Article in English | MEDLINE | ID: mdl-18069821

ABSTRACT

The structure of ammonium gallium cryolite (NH(4))(3)GaF(6) was investigated by (19)F and (69,71)Ga magic-angle spinning (MAS) NMR in comparison with X-ray powder diffraction followed by Rietveld refinement. In agreement with previous thermodynamic measurements, NMR experiments on (NH(4))(3)GaF(6) support the model of rigid GaF(6) octahedra. At high spinning speeds (30 kHz), the scalar coupling between the six equivalent (19)F nuclei and (69,71)Ga can be directly observed in the powder spectra. The coupling constants are J(19)F(69)Ga = 197 Hz and J(19)F(71)Ga = 264 Hz. To explain the (71)Ga spectra recorded at 3 kHz a small distribution of quadrupolar frequencies has to be included. The spread of the spinning sidebands hints to a largest nu(Q) value of 28 kHz for (71)Ga. This can be explained by the occurrence of highly symmetric GaF(6) octahedra, which are tilted against the surrounding atoms. In addition, the incomplete motional excitation does not average out the quadrupolar effects. NMR findings are in discrepancy to those of Rietveld refinement. As result it appears that X-ray diffraction is not sensitive enough to deliver proper results.

6.
Angew Chem Int Ed Engl ; 43(48): 6653-6, 2004 Dec 10.
Article in English | MEDLINE | ID: mdl-15593170
7.
Inorg Chem ; 42(20): 6474-83, 2003 Oct 06.
Article in English | MEDLINE | ID: mdl-14514324

ABSTRACT

The structure of the very strong solid Lewis acid aluminum chlorofluoride (ACF, AlCl(x)F(3-x), x = 0.05-0.3) was studied by IR, ESR, Cl K XANES, (19)F MAS NMR, and (27)Al SATRAS NMR spectroscopic methods and compared with amorphous aluminum fluoride conventionally prepared by dehydration of alpha-AlF(3) x 3H(2)O. The thermal behavior of both compounds was investigated by DTA and XRD. In comparison to ACF, amorphous AlF(3) prepared in a conventional way is not catalytically active for the isomerization reaction of 1,2-dibromohexafluoropropane, which requires a very strong Lewis acid. Both compounds are mainly built up of corner-sharing AlF(6) octahedra forming a random network. The degree of disorder in ACF is higher than in amorphous AlF(3). Terminal fluorine atoms were detected in ACF by (19)F NMR. The chlorine in ACF does not exist as a separate, crystalline AlCl(3) phase. Additionally, chlorine-containing radicals, remaining from the synthesis, are trapped in cavities of ACF. These radicals are stable at room temperature but do not take part in the catalytic reaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...