Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Molecules ; 28(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36838984

ABSTRACT

Circular economy holds great potential to minimize the use of finite resources, and reduce waste formation by the creation of closed-loop systems. This also pertains to the utilization of sidestreams in large-scale biotechnological processes. A flexible feedstock concept has been established for the industrially relevant Corynebacterium glutamicum, which naturally synthesizes the yellow C50 carotenoid decaprenoxanthin. In this study, we aimed to use a preprocessed aquaculture sidestream for production of carotenoids, including the fish feed ingredient astaxanthin by C. glutamicum. The addition of a preprocessed aquaculture sidestream to the culture medium did not inhibit growth, obviated the need for addition of several components of the mineral salt's medium, and notably enhanced production of astaxanthin by an engineered C. glutamicum producer strain. Improved astaxanthin production was scaled to 2 L bioreactor fermentations. This strategy to improve astaxanthin production was shown to be transferable to production of several native and non-native carotenoids. Thus, this study provides a proof-of-principle for improving carotenoid production by C. glutamicum upon supplementation of a preprocessed aquaculture sidestream. Moreover, in the case of astaxanthin production it may be a potential component of a circular economy in aquaculture.


Subject(s)
Corynebacterium glutamicum , Animals , Corynebacterium glutamicum/genetics , Metabolic Engineering , Carotenoids , Aquaculture
2.
Front Bioeng Biotechnol ; 9: 669093, 2021.
Article in English | MEDLINE | ID: mdl-34124022

ABSTRACT

Fructose utilization in Corynebacterium glutamicum starts with its uptake and concomitant phosphorylation via the phosphotransferase system (PTS) to yield intracellular fructose 1-phosphate, which enters glycolysis upon ATP-dependent phosphorylation to fructose 1,6-bisphosphate by 1-phosphofructokinase. This is known to result in a significantly reduced oxidative pentose phosphate pathway (oxPPP) flux on fructose (∼10%) compared to glucose (∼60%). Consequently, the biosynthesis of NADPH demanding products, e.g., L-lysine, by C. glutamicum is largely decreased when fructose is the only carbon source. Previous works reported that fructose is partially utilized via the glucose-specific PTS presumably generating fructose 6-phosphate. This closer proximity to the entry point of the oxPPP might increase oxPPP flux and, consequently, NADPH availability. Here, we generated deletion strains lacking either the fructose-specific PTS or 1-phosphofructokinase activity. We used these strains in short-term evolution experiments on fructose minimal medium and isolated mutant strains, which regained the ability of fast growth on fructose as a sole carbon source. In these fructose mutants, the deletion of the glucose-specific PTS as well as the 6-phosphofructokinase gene, abolished growth, unequivocally showing fructose phosphorylation via glucose-specific PTS to fructose 6-phosphate. Gene sequencing revealed three independent amino acid substitutions in PtsG (M260V, M260T, and P318S). These three PtsG variants mediated faster fructose uptake and utilization compared to native PtsG. In-depth analysis of the effects of fructose utilization via these PtsG variants revealed significantly increased ODs, reduced side-product accumulation, and increased L-lysine production by 50%.

3.
Microorganisms ; 9(1)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33478126

ABSTRACT

Corynebacterium glutamicum has been safely used in white biotechnology for the last 60 years and the portfolio of new pathways and products is increasing rapidly. Hence, expression vectors play a central role in discovering endogenous gene functions and in establishing heterologous gene expression. In this work, new expression vectors were designed based on two strategies: (i) a library screening of constitutive native and synthetic promoters and (ii) an increase of the plasmid copy number. Both strategies were combined and resulted in a very strong expression and overproduction of the fluorescence protein GfpUV. As a second test case, the improved vector for constitutive expression was used to overexpress the endogenous xylulokinase gene xylB in a synthetic operon with xylose isomerase gene xylA from Xanthomonas campestris. The xylose isomerase activity in crude extracts was increased by about three-fold as compared to that of the parental vector. In terms of application, the improved vector for constitutive xylA and xylB expression was used for production of the N-methylated amino acid sarcosine from monomethylamine, acetate, and xylose. As a consequence, the volumetric productivity of sarcosine production was 50% higher as compared to that of the strain carrying the parental vector.

4.
Microbiology (Reading) ; 158(Pt 8): 2060-2072, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22653947

ABSTRACT

The application of toxic triphenylmethane dyes such as crystal violet (CV) in various industrial processes leads to large amounts of dye-contaminated sludges that need to be detoxified. Specific bacteria residing in wastewater treatment plants (WWTPs) are able to degrade triphenylmethane dyes. The objective of this work was to gain insights into the genetic background of bacterial strains capable of CV degradation. Three bacterial strains isolated from a municipal WWTP harboured IncP-1ß plasmids mediating resistance to and decolorization of CV. These isolates were assigned to the genera Comamonas and Delftia. The CV-resistance plasmid pKV29 from Delftia sp. KV29 was completely sequenced. In addition, nucleotide sequences of the accessory regions involved in conferring CV resistance were determined for plasmids pKV11 and pKV36 from the other two isolates. Plasmid pKV29 contains typical IncP-1ß backbone modules that are highly similar to those of previously sequenced IncP-1ß plasmids that confer antibiotic resistance, degradative capabilities or mercury resistance. The accessory regions located between the conjugative transfer (tra) and mating pair formation modules (trb) of all three plasmids analysed share common modules and include a triphenylmethane reductase gene, tmr, that is responsible for decolorization of CV. Moreover, these accessory regions encode other enzymes that are dispensable for CV degradation and hence are involved in so-far-unknown metabolic pathways. Analysis of plasmid-mediated degradation of CV in Escherichia coli by ultra-high-performance liquid chromatography-electrospray ionization-quadrupole-time-of-flight MS revealed that leuco crystal violet was the first degradation product. Michler's ketone and 4-dimethylaminobenzaldehyde appeared as secondary degradation metabolites. Enzymes encoded in the E. coli chromosome seem to be responsible for cleavage of leuco crystal violet. Plasmid-mediated degradation of triphenylmethane dyes such as CV is an option for the biotechnological treatment of sludges contaminated with these dyes.


Subject(s)
Comamonas/metabolism , Delftia/metabolism , Gentian Violet/metabolism , Plasmids/genetics , Trityl Compounds/metabolism , Wastewater/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biodegradation, Environmental , Comamonas/classification , Comamonas/genetics , Comamonas/isolation & purification , Delftia/classification , Delftia/genetics , Delftia/isolation & purification , Molecular Sequence Data , Oxidoreductases/genetics , Oxidoreductases/metabolism , Plasmids/metabolism , Sewage/microbiology , Waste Disposal, Fluid/instrumentation
5.
Microbiology (Reading) ; 155(Pt 7): 2306-2319, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19389756

ABSTRACT

To detect plasmid-borne antibiotic-resistance genes in wastewater treatment plant (WWTP) bacteria, 192 resistance-gene-specific PCR primer pairs were designed and synthesized. Subsequent PCR analyses on total plasmid DNA preparations obtained from bacteria of activated sludge or the WWTP's final effluents led to the identification of, respectively, 140 and 123 different resistance-gene-specific amplicons. The genes detected included aminoglycoside, beta-lactam, chloramphenicol, fluoroquinolone, macrolide, rifampicin, tetracycline, trimethoprim and sulfonamide resistance genes as well as multidrug efflux and small multidrug resistance genes. Some of these genes were only recently described from clinical isolates, demonstrating genetic exchange between clinical and WWTP bacteria. Sequencing of selected resistance-gene-specific amplicons confirmed their identity or revealed that the amplicon nucleotide sequence is very similar to a gene closely related to the reference gene used for primer design. These results demonstrate that WWTP bacteria are a reservoir for various resistance genes. Moreover, detection of about 64 % of the 192 reference resistance genes in bacteria obtained from the WWTP's final effluents indicates that these resistance determinants might be further disseminated in habitats downstream of the sewage plant.


Subject(s)
Bacteria/genetics , Drug Resistance, Multiple, Bacterial/genetics , Plasmids , Sewage/microbiology , Waste Disposal, Fluid , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Conjugation, Genetic , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Genes, Bacterial , Genome, Bacterial , Polymerase Chain Reaction , Sequence Analysis, DNA
6.
J Biotechnol ; 136(1-2): 77-90, 2008 Aug 31.
Article in English | MEDLINE | ID: mdl-18597880

ABSTRACT

Composition and gene content of a biogas-producing microbial community from a production-scale biogas plant fed with renewable primary products was analysed by means of a metagenomic approach applying the ultrafast 454-pyrosequencing technology. Sequencing of isolated total community DNA on a Genome Sequencer FLX System resulted in 616,072 reads with an average read length of 230 bases accounting for 141,664,289 bases sequence information. Assignment of obtained single reads to COG (Clusters of Orthologous Groups of proteins) categories revealed a genetic profile characteristic for an anaerobic microbial consortium conducting fermentative metabolic pathways. Assembly of single reads resulted in the formation of 8752 contigs larger than 500 bases in size. Contigs longer than 10kb mainly encode house-keeping proteins, e.g. DNA polymerase, recombinase, DNA ligase, sigma factor RpoD and genes involved in sugar and amino acid metabolism. A significant portion of contigs was allocated to the genome sequence of the archaeal methanogen Methanoculleus marisnigri JR1. Mapping of single reads to the M. marisnigri JR1 genome revealed that approximately 64% of the reference genome including methanogenesis gene regions are deeply covered. These results suggest that species related to those of the genus Methanoculleus play a dominant role in methanogenesis in the analysed fermentation sample. Moreover, assignment of numerous contig sequences to clostridial genomes including gene regions for cellulolytic functions indicates that clostridia are important for hydrolysis of cellulosic plant biomass in the biogas fermenter under study. Metagenome sequence data from a biogas-producing microbial community residing in a fermenter of a biogas plant provide the basis for a rational approach to improve the biotechnological process of biogas production.


Subject(s)
Archaea/physiology , Bioreactors/microbiology , Chromosome Mapping/methods , Genome, Archaeal/genetics , Methane/metabolism , Sequence Analysis, DNA/methods , Base Sequence , Biotechnology/methods , Molecular Sequence Data
7.
Appl Environ Microbiol ; 73(20): 6345-50, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17675426

ABSTRACT

Plasmid pGNB1 was isolated from bacteria residing in the activated sludge compartment of a wastewater treatment plant by using a transformation-based approach. This 60-kb plasmid confers resistance to the triphenylmethane dye crystal violet and enables its host bacterium to decolorize crystal violet. Partial sequencing of pGNB1 revealed that its backbone is very similar to that of previously sequenced IncP-1beta plasmids. The two accessory regions of the plasmid, one located downstream of the replication initiation gene trfA and the other located between the conjugative transfer modules Tra and Trb, were completely sequenced. Accessory region L1 contains a transposon related to Tn5501 and a gene encoding a Cupin 2 conserved barrel protein with an unknown function. The triphenylmethane reductase gene tmr and a truncated dihydrolipoamide dehydrogenase gene that is flanked by IS1071 and another putative insertion element were identified in accessory region L2. Subcloning of the pGNB1 tmr gene demonstrated that this gene is responsible for the observed crystal violet resistance phenotype and mediates decolorization of the triphenylmethane dyes crystal violet, malachite green, and basic fuchsin. Plasmid pGNB1 and the associated phenotype are transferable to the alpha-proteobacterium Sinorhizobium meliloti and the gamma-proteobacterium Escherichia coli. This is the first report of a promiscuous IncP-1beta plasmid isolated from the bacterial community from a wastewater treatment plant that harbors a triphenylmethane reductase gene. The pGNB1-encoded enzyme activity is discussed with respect to bioremediation of sewage polluted with triphenylmethane dyes.


Subject(s)
Bacteria/genetics , Ecosystem , Oxidoreductases/genetics , Plasmids/genetics , Sewage/microbiology , Trityl Compounds/metabolism , Bacteria/enzymology , Bacteria/growth & development , Conjugation, Genetic , DNA Transposable Elements , Gentian Violet/metabolism , Molecular Sequence Data , Oxidoreductases/metabolism , Plasmids/isolation & purification , Rosaniline Dyes/metabolism , Sequence Analysis, DNA , Trityl Compounds/pharmacology , Waste Disposal, Fluid/methods
8.
Antimicrob Agents Chemother ; 51(2): 673-8, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17101677

ABSTRACT

The macrolide resistance plasmid pRSB111 was isolated from bacteria residing in the final effluents of a wastewater treatment plant. The 47-kb plasmid confers resistance to azithromycin, clarithromycin, erythromycin, roxithromycin, and tylosin when it is carried by Pseudomonas sp. strain B13 and is very similar to prototype IncP-1beta plasmid pB3, which was previously isolated from an activated-sludge bacterial community of a wastewater treatment plant. The two plasmids differ in their accessory regions, located downstream of the conjugative transfer module gene traC. Nucleotide sequence analysis of the pRSB111 accessory region revealed that it contains a new macrolide resistance module composed of the genes mphR(E), mph(E), and mrx(E), which putatively encode a transcriptional regulator, a macrolide phosphotransferase, and a transmembrane transport protein, respectively. Analysis of the contributions of the individual genes of the macrolide resistance module revealed that mph(E) and mrx(E) are required for high-level macrolide resistance. The resistance genes are flanked by two insertion sequences, namely, ISPa15 and ISRSB111. Two truncated transposable elements, IS6100 and remnants of a Tn3-like transposon, were identified in the vicinity of ISRSB111. The accessory element of pRSB111 apparently replaced the Tn402-like element present on the sister plasmid, pB3, as suggested by the conservation of Tn402-specific terminal inverted repeats on pRSB111.


Subject(s)
Bacterial Proteins/genetics , Drug Resistance, Bacterial , Macrolides , Plasmids , Base Sequence , Genes, Bacterial , Molecular Sequence Data , Plants/microbiology , Water Microbiology
9.
Plasmid ; 53(3): 218-38, 2005 May.
Article in English | MEDLINE | ID: mdl-15848226

ABSTRACT

To analyse the significance of conjugative broad-host-range IncP-1alpha plasmids for the spread of antibiotic resistance determinants in waste-water treatment plants we isolated and characterised five different IncP-1alpha plasmids from bacteria of activated sludge and the final effluents of a municipal waste-water treatment plant. These plasmids mediate resistance to ampicillin, cefaclor, cefuroxime, gentamicin, kanamycin, spectinomycin, streptomycin, tetracycline, tobramycin, and trimethoprim. The complete 68,869 bp DNA-sequence of the IncP-1alpha plasmid pTB11 was determined. The pTB11 backbone modules for replication (Rep), mating pair formation (Trb), multimer resolution (Mrs), post-segregational killing (Psk), conjugative DNA-transfer (Tra), plasmid control (Ctl), and stable maintenance and inheritance (KilA, KilE, and KilC) are highly conserved as compared to the 'Birmingham' IncP-1alpha plasmids. In contrast to the 'Birmingham' plasmids pTB11 carries an insert of a Tn402-derivative integrating a class 1 integron in the intergenic region between the multimer resolution operon parCBA and the post-segregational killing operon parDE. The integron comprises the resistance gene cassettes oxa2 (beta-lactamase), aacA4 (aminoglycoside-6'N-acetyltransferase), and aadA1 (aminoglycoside-3'-adenylyltransferase) and a complete tniABQR transposition module. Integron-specific sequences were also identified on other IncP-1alpha plasmids analysed in this work. In contrast to the 'Birmingham' plasmids the pTB11 tetracycline resistance module carries a pecM- and a pncA-like gene downstream of the tetracycline resistance gene tetA and contains an insertion of the new insertion sequence element ISTB11. The transposable elements IS21 and Tn1 which disrupted, respectively, orf7 and klcB on the 'Birmingham' plasmids are not present on pTB11. Identification of IncP-1alpha plasmids in bacteria of the waste-water treatment plant's final effluents indicates that bacteria carrying these kind of plasmids are released into the environment.


Subject(s)
DNA Transposable Elements , Integrons/genetics , Plasmids/chemistry , Plasmids/genetics , Sewage/microbiology , Tetracycline Resistance/genetics , Base Sequence , Chromosome Mapping , Chromosomes, Bacterial , Conjugation, Genetic , DNA, Bacterial/chemistry , Drug Resistance, Multiple, Bacterial/genetics , Genes, Bacterial , Molecular Sequence Data , Plasmids/isolation & purification , Sequence Analysis, DNA , Waste Disposal, Fluid
10.
Microbiology (Reading) ; 150(Pt 11): 3613-3630, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15528650

ABSTRACT

Ten different antibiotic resistance plasmids conferring high-level erythromycin resistance were isolated from an activated sludge bacterial community of a wastewater treatment plant by applying a transformation-based approach. One of these plasmids, designated pRSB101, mediates resistance to tetracycline, erythromycin, roxythromycin, sulfonamides, cephalosporins, spectinomycin, streptomycin, trimethoprim, nalidixic acid and low concentrations of norfloxacin. Plasmid pRSB101 was completely sequenced and annotated. Its size is 47 829 bp. Conserved synteny exists between the pRSB101 replication/partition (rep/par) module and the pXAC33-replicon from the phytopathogen Xanthomonas axonopodis pv. citri. The second pRSB101 backbone module encodes a three-Mob-protein type mobilization (mob) system with homology to that of IncQ-like plasmids. Plasmid pRSB101 is mobilizable with the help of the IncP-1alpha plasmid RP4 providing transfer functions in trans. A 20 kb resistance region on pRSB101 is located within an integron-containing Tn402-like transposon. The variable region of the class 1 integron carries the genes dhfr1 for a dihydrofolate reductase, aadA2 for a spectinomycin/streptomycin adenylyltransferase and bla(TLA-2) for a so far unknown Ambler class A extended spectrum beta-lactamase. The integron-specific 3'-segment (qacEDelta1-sul1-orf5Delta) is connected to a macrolide resistance operon consisting of the genes mph(A) (macrolide 2'-phosphotransferase I), mrx (hydrophobic protein of unknown function) and mphR(A) (regulatory protein). Finally, a putative mobile element with the tetracycline resistance genes tetA (tetracycline efflux pump) and tetR was identified upstream of the Tn402-specific transposase gene tniA. The second 'genetic load' region on pRSB101 harbours four distinct mobile genetic elements, another integron belonging to a new class and footprints of two more transposable elements. A tripartite multidrug (MDR) transporter consisting of an ATP-binding-cassette (ABC)-type ATPase and permease, and an efflux membrane fusion protein (MFP) of the RND-family is encoded between the replication/partition and the mobilization module. Homologues of the macrolide resistance genes mph(A), mrx and mphR(A) were detected on eight other erythromycin resistance-plasmids isolated from activated sludge bacteria. Plasmid pRSB101-like repA amplicons were also obtained from plasmid-DNA preparations of the final effluents of the wastewater treatment plant indicating that pRSB101-like plasmids are released with the final effluents into the environment.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/genetics , Drug Resistance, Multiple, Bacterial/genetics , R Factors/genetics , Sewage/microbiology , ATP-Binding Cassette Transporters/genetics , Antiporters/genetics , Bacterial Proteins/genetics , Cephalosporins/pharmacology , DNA Transposable Elements/genetics , DNA, Bacterial/chemistry , Erythromycin/pharmacology , Molecular Sequence Data , Nalidixic Acid/pharmacology , Nucleotidyltransferases/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Sequence Analysis, DNA , Spectinomycin/pharmacology , Streptomycin/pharmacology , Sulfonamides/pharmacology , Synteny , Tetracycline Resistance/genetics , Tetrahydrofolate Dehydrogenase/genetics , Transcription Factors/genetics , Trimethoprim Resistance , Xanthomonas/genetics , beta-Lactamases/genetics
11.
Arch Microbiol ; 182(6): 429-35, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15375643

ABSTRACT

The multiresistance IncP-1 beta plasmid pB10 conferring resistance to ampicillin, streptomycin, sulfonamides, tetracycline and mercury ions was previously obtained from activated sludge bacteria by applying the exogenous isolation method with Pseudomonas sp. strain GFP2 as recipient. A pB10 derivative, designated pB10-1, occurred spontaneously and displays an extended NotI restriction fragment. From the pB10 nucleotide sequence, it is known that the corresponding NotI fragment of this plasmid contains a complete class 1 integron with an oxa2 and an orfE-like gene cassette. Sequencing of the integron-specific variable region present on pB10-1 revealed that a second copy of the oxa2 gene cassette has inserted downstream of the orfE-like cassette. Sequences flanking the second oxa2 cassette indicate that this cassette was excised from pB10 and reinserted at a new site in an integrase-catalyzed manner. Duplication of the oxa2 cassette is associated with a higher level of ampicillin resistance. Another pB10 derivative, designated pB10-2, conferring higher resistance to ampicillin, was shown to carry an IS10 insertion upstream of the oxa2 cassette. Since IS10 possesses a promoter-out activity, it can be assumed that the elevated ampicillin resistance level is due to enhanced transcription of the beta-lactamase gene.


Subject(s)
Integrons/genetics , Plasmids/genetics , Pseudomonas/drug effects , Pseudomonas/genetics , Recombination, Genetic , beta-Lactam Resistance/genetics , Ampicillin/pharmacology , Anti-Bacterial Agents/pharmacology , DNA, Bacterial/chemistry , DNA, Bacterial/isolation & purification , Gene Dosage , Gene Duplication , Microbial Sensitivity Tests , Molecular Sequence Data , Promoter Regions, Genetic/physiology , Sequence Analysis, DNA , Sewage , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...