Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3358, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637520

ABSTRACT

Single indistinguishable photons at telecom C-band wavelengths are essential for quantum networks and the future quantum internet. However, high-throughput technology for single-photon generation at 1550 nm remained a missing building block to overcome present limitations in quantum communication and information technologies. Here, we demonstrate the high-throughput fabrication of quantum-photonic integrated devices operating at C-band wavelengths based on epitaxial semiconductor quantum dots. Our technique enables the deterministic integration of single pre-selected quantum emitters into microcavities based on circular Bragg gratings. Respective devices feature the triggered generation of single photons with ultra-high purity and record-high photon indistinguishability. Further improvements in yield and coherence properties will pave the way for implementing single-photon non-linear devices and advanced quantum networks at telecom wavelengths.

2.
Nanotechnology ; 34(17)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36640445

ABSTRACT

In our previous paper we have modelled a dielectrophoretic force (DEP) and cell particle behavior in a microfluidic channel (Weber MUet al2023 Chip for dielectrophoretic microbial capture, separation and detection I: theoretical basis of electrode designNanotechnologythis issue). Here we test and confirm the results of our modeling work by experimentally validating the theoretical design constraints of the ring electrode architecture. We have compared and tested the geometry and particle capture and separation performance of the two separate electrode designs (the ring and dot electrode structures) by investigating bacterial motion in response to the applied electric field. We have quantitatively evaluated the electroosmosis (EO) to positive DEP (PDEP) transition in both electrode designs and explained the differences in capture efficiency of the ring and dot electrode systems. The ring structure shows 99% efficiency of bacterial capture both for PDEP and for EO. Moreover, the ring structure shows an over 200 faster bacterial response to the electric field. We have also established that the ring electrode architecture, with appropriate structure periodicity and spacing, results in efficient capture and separation of microbial cells. We have identified several critical design constraints that are required to achieve high efficiency bacterial capture. We have established that the spacing between consecutive DEP traps smaller than the length of the depletion zone will ensure that the DEP force dominates bacterial motion over motility and Brownian motion.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Electrophoresis/methods , Microfluidics/methods , Electrodes , Microfluidic Analytical Techniques/methods , Cell Separation/methods
3.
Nanotechnology ; 34(13)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36571849

ABSTRACT

We model the dielectrophoretic response ofE. colibacterial cells and red blood cells, upon exposure to an electric field. We model the separation, capture, and release mechanisms under flow conditions in a microfluidic channel and show under which conditions efficient separation of different cell types occurs. The modelling work is aimed to guide the separation electrode architecture and design for experimental validation of the model. The dielectrophoretic force is affected both by the geometry of the electrodes (the gradient of the electric field), the Re{CM(ω)} factor, and the permittivity of the medium ϵm. Our modelling makes testable predictions and shows that designing the electrode structure to ensure structure periodicity with spacing between consecutive traps smaller than the length of the depletion zone ensures efficient capture and separation. Such electrode system has higher capture and separation efficiency than systems with the established circular electrode architecture. The simulated, modelled microfluidic design allows for the separated bacteria, concentrated by dedicated dielectrophoretic regions, to be subsequently detected using label-free functionalized nanowire sensors. The experimental validation of the modelling work presented here and the validation of the theoretical design constraints of the chip electrode architecture is presented in the companion paper in the same issue (Weber MUet al2022 Chip for dielectrophoretic Microbial Capture, Separation and Detection II: Experimental Study).


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Electrodes , Electricity , Bacteria , Cell Separation , Electrophoresis
4.
Eur J Neurosci ; 55(9-10): 2474-2490, 2022 05.
Article in English | MEDLINE | ID: mdl-33909305

ABSTRACT

Chronic stress produces long-term metabolic changes throughout the superfamily of nuclear receptors, potentially causing various pathologies. Sex hormones modulate the stress response and generate a sex-specific age-dependent metabolic imprint, especially distinct in the reproductive senescence of females. We monitored chronic stress recovery in two age groups of female Sprague Dawley rats to determine whether stress and/or aging structurally changed the glycolipid microenvironment, a milieu playing an important role in cognitive functions. Old females experienced memory impairment even at basal conditions, which was additionally amplified by stress. On the other hand, the memory of young females was not disrupted. Stress recovery was followed by a microglial decrease and an increase in astrocyte count in the hippocampal immune system. Since dysfunction of the brain immune system could contribute to disturbed synaptogenesis, we analyzed neuroplastin expression and the lipid environment. Neuroplastin microenvironments were explored by analyzing immunofluorescent stainings using a newly developed Python script method. Stress reorganized glycolipid microenvironment in the Cornu Ammonis 1 (CA1) and dentate gyrus (DG) hippocampal regions of old females but in a very different fashion, thus affecting neuroplasticity. The postulation of four possible neuroplastin environments pointed to the GD1a ganglioside enrichment during reproductive senescence of stressed females, as well as its high dispersion in both regions and to GD1a and GM1 loss in the CA1 region. A specific lipid environment might influence neuroplastin functionality and underlie synaptic dysfunction triggered by a combination of aging and chronic stress.


Subject(s)
Aging , Hippocampus , Animals , Female , Glycolipids/metabolism , Hippocampus/physiology , Lipids , Male , Rats , Rats, Sprague-Dawley
5.
Sci Rep ; 10(1): 20016, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33208804

ABSTRACT

"All-in-one" multifunctional nanomaterials, which can be visualized simultaneously by several imaging techniques, are required for the efficient diagnosis and treatment of many serious diseases. This report addresses the design and synthesis of upconversion magnetic NaGdF4:Yb3+/Er3+(Tm3+) nanoparticles by an oleic acid-stabilized high-temperature coprecipitation of lanthanide precursors in octadec-1-ene. The nanoparticles, which emit visible or UV light under near-infrared (NIR) irradiation, were modified by in-house synthesized PEG-neridronate to facilitate their dispersibility and colloidal stability in water and bioanalytically relevant phosphate buffered saline (PBS). The cytotoxicity of the nanoparticles was determined using HeLa cells and human fibroblasts (HF). Subsequently, the particles were modified by Bolton-Hunter-neridronate and radiolabeled by 125I to monitor their biodistribution in mice using single-photon emission computed tomography (SPECT). The upconversion and the paramagnetic properties of the NaGdF4:Yb3+/Er3+(Tm3+)@PEG nanoparticles were evaluated by photoluminescence, magnetic resonance (MR) relaxometry, and magnetic resonance imaging (MRI) with 1 T and 4.7 T preclinical scanners. MRI data were obtained on phantoms with different particle concentrations and during pilot long-time in vivo observations of a mouse model. The biological and physicochemical properties of the NaGdF4:Yb3+/Er3+(Tm3+)@PEG nanoparticles make them promising as a trimodal optical/MRI/SPECT bioimaging and theranostic nanoprobe for experimental medicine.

6.
ACS Omega ; 5(41): 26537-26544, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33110981

ABSTRACT

Development of upconverting nanomaterials which are able to emit visible light upon near-infrared excitation opens a wide range of potential applications. Because of their remarkable photostability, they are widely used in bioimaging, optogenetics, and optoelectronics. In this work, we demonstrate the influence of several experimental conditions as well as a dopant concentration on the luminescence properties of upconverting nanocrystals (UPNCs) that need to be taken into account for their efficient use in the practical applications. We found that not only nanoparticle architecture affects the optical properties of UPNCs, but also factors such as sample concentration, excitation light power density, and temperature may influence the green-to-red emission ratio. We performed studies on both the single-nanoparticle and ensemble levels over a broad concentration range and found the heterogeneity in the optical properties of UPNCs with low dopant concentrations.

7.
Front Chem ; 8: 497, 2020.
Article in English | MEDLINE | ID: mdl-32596210

ABSTRACT

Lanthanide-doped upconversion nanoparticles (UCNPs) have a unique capability of upconverting near-infrared (NIR) excitation into ultraviolet, visible, and NIR emission. Conventional UCNPs composed of NaYF4:Yb3+/Er3+(Tm3+) are excited by NIR light at 980 nm, where undesirable absorption by water can cause overheating or damage of living tissues and reduce nanoparticle luminescence. Incorporation of Nd3+ ions into the UCNP lattice shifts the excitation wavelength to 808 nm, where absorption of water is minimal. Herein, core-shell NaYF4:Yb3+/Er3+@NaYF4:Nd3+ nanoparticles, which are doubly doped by sensitizers (Yb3+ and Nd3+) and an activator (Er3+) in the host NaYF4 matrix, were synthesized by high-temperature coprecipitation of lanthanide chlorides in the presence of oleic acid as a stabilizer. Uniform core (24 nm) and core-shell particles with tunable shell thickness (~0.5-4 nm) were thoroughly characterized by transmission electron microscopy (TEM), energy-dispersive analysis, selected area electron diffraction, and photoluminescence emission spectra at 808 and 980 nm excitation. To ensure dispersibility of the particles in biologically relevant media, they were coated by in-house synthesized poly(ethylene glycol) (PEG)-neridronate terminated with an alkyne (Alk). The stability of the NaYF4:Yb3+/Er3+@NaYF4:Nd3+-PEG-Alk nanoparticles in water or 0.01 M PBS and the presence of PEG on the surface were determined by dynamic light scattering, ζ-potential measurements, thermogravimetric analysis, and FTIR spectroscopy. Finally, the adhesive azidopentanoyl-modified GGGRGDSGGGY-NH2 (RGDS) peptide was immobilized on the NaYF4:Yb3+/Er3+@NaYF4:Nd3+-PEG-Alk particles via Cu(I)-catalyzed azide-alkyne cycloaddition. The toxicity of the unmodified core-shell NaYF4:Yb3+/Er3+@NaYF4:Nd3+, NaYF4:Yb3+/Er3+@NaYF4:Nd3+-PEG-Alk, and NaYF4:Yb3+/Er3+@NaYF4:Nd3+-PEG-RGDS nanoparticles on both Hep-G2 and HeLa cells was determined, confirming no adverse effect on their survival and proliferation. The interaction of the nanoparticles with Hep-G2 cells was monitored by confocal microscopy at both 808 and 980 nm excitation. The NaYF4:Yb3+/Er3+@NaYF4:Nd3+-PEG-RGDS nanoparticles were localized on the cell membranes due to specific binding of the RGDS peptide to integrins, in contrast to the NaYF4:Yb3+/Er3+@NaYF4:Nd3+-PEG-Alk particles, which were not engulfed by the cells. The NaYF4:Yb3+/Er3+@NaYF4:Nd3+-PEG-RGDS nanoparticles thus appear to be promising as a new non-invasive probe for specific bioimaging of cells and tissues. This development makes the nanoparticles useful for diagnostic and/or, after immobilization of a bioactive compound, even theranostic applications in the treatment of various fatal diseases.

8.
Proc Natl Acad Sci U S A ; 114(27): 7013-7018, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28630286

ABSTRACT

Fluorophores with dynamic or controllable fluorescence emission have become essential tools for advanced imaging, such as superresolution imaging. These applications have driven the continuing development of photoactivatable or photoconvertible labels, including genetically encoded fluorescent proteins. These new probes work well but require the introduction of new labels that may interfere with the proper functioning of existing constructs and therefore require extensive functional characterization. In this work we show that the widely used red fluorescent protein mCherry can be brought to a purely chemically induced blue-fluorescent state by incubation with ß-mercaptoethanol (ßME). The molecules can be recovered to the red fluorescent state by washing out the ßME or through irradiation with violet light, with up to 80% total recovery. We show that this can be used to perform single-molecule localization microscopy (SMLM) on cells expressing mCherry, which renders this approach applicable to a very wide range of existing constructs. We performed a detailed investigation of the mechanism underlying these dynamics, using X-ray crystallography, NMR spectroscopy, and ab initio quantum-mechanical calculations. We find that the ßME-induced fluorescence quenching of mCherry occurs both via the direct addition of ßME to the chromophore and through ßME-mediated reduction of the chromophore. These results not only offer a strategy to expand SMLM imaging to a broad range of available biological models, but also present unique insights into the chemistry and functioning of a highly important class of fluorophores.


Subject(s)
Fluorescent Dyes/chemistry , Luminescent Proteins/chemistry , Microscopy, Fluorescence/instrumentation , Animals , COS Cells , Chlorocebus aethiops , Color , Crystallography, X-Ray , HeLa Cells , Humans , Light , Magnetic Resonance Spectroscopy , Mercaptoethanol/chemistry , Microscopy, Fluorescence/methods , Photochemical Processes , Quantum Theory , Reducing Agents/chemistry , Software , X-Rays , Red Fluorescent Protein
9.
J Am Chem Soc ; 139(21): 7156-7159, 2017 05 31.
Article in English | MEDLINE | ID: mdl-28497688

ABSTRACT

Synthetic molecular motors continue to attract great interest due to their ability to transduce energy into nanomechanical motion, the potential to do work and drive systems out-of-equilibrium. Of particular interest are unidirectional rotary molecular motors driven by chemical fuel or light. Probing the mechanistic details of their operation at the single-molecule level is hampered by the diffraction limit, which prevents the collection of dynamic positional information by traditional optical methods. Here, we use defocused wide-field imaging to examine the unidirectional rotation of individual molecular rotary motors on a quartz surface in unprecedented detail. The sequential occupation of nanomechanical states during the UV and heat-induced cycle of rotation are directly imaged in real-time. The approach will undoubtedly prove important in elucidating the mechanistic details and assessing the utility of novel synthetic molecular motors in the future.

10.
Biomed Opt Express ; 7(2): 467-80, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26977356

ABSTRACT

Stochastic optical fluctuation imaging (SOFI) is a super-resolution fluorescence imaging technique that makes use of stochastic fluctuations in the emission of the fluorophores. During a SOFI measurement multiple fluorescence images are acquired from the sample, followed by the calculation of the spatiotemporal cumulants of the intensities observed at each position. Compared to other techniques, SOFI works well under conditions of low signal-to-noise, high background, or high emitter densities. However, it can be difficult to unambiguously determine the reliability of images produced by any superresolution imaging technique. In this work we present a strategy that enables the estimation of the variance or uncertainty associated with each pixel in the SOFI image. In addition to estimating the image quality or reliability, we show that this can be used to optimize the signal-to-noise ratio (SNR) of SOFI images by including multiple pixel combinations in the cumulant calculation. We present an algorithm to perform this optimization, which automatically takes all relevant instrumental, sample, and probe parameters into account. Depending on the optical magnification of the system, this strategy can be used to improve the SNR of a SOFI image by 40% to 90%. This gain in information is entirely free, in the sense that it does not require additional efforts or complications. Alternatively our approach can be applied to reduce the number of fluorescence images to meet a particular quality level by about 30% to 50%, strongly improving the temporal resolution of SOFI imaging.

11.
J Phys Condens Matter ; 25(19): 194103, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23611979

ABSTRACT

Metallic quantum dots, or nanoparticles, have found an increasing number of applications not only in nanotechnology and nanoscience, but also in neighboring disciplines, such as chemistry and biology. Among the variety of ways to exploit the unique properties of metallic nanostructures is the notion that plasmonic effects associated with the movement of free carriers in metallic nanoparticles may enhance photosynthetic function in naturally evolved organisms. We report on optical microscopy and spectroscopy studies of three hybrid nanostructures composed of spherical gold nanoparticles and peridinin-chlorophyll-protein (PCP), a light-harvesting complex from algae. In the case of a bioconjugated structure we find efficient, concentration dependent quenching due to non-radiative energy transfer. In contrast, for the PCP complexes deposited directly on Au nanoparticles, the emission is increased as a result of the strong increase of the fluorescence quantum yield. Finally, for a structure with controlled separation between metallic nanoparticles and the light-harvesting complexes the emission features non-monotonic behavior with maximum enhancement of about 6, which is due to a combination of fluorescence and absorption rate increases. In this way we demonstrate how the design of plasmonic hybrid nanostructures determines the optical response, which is important for engineering novel systems for photovoltaics and sensor applications, for instance.


Subject(s)
Carotenoids/chemistry , Dinoflagellida/metabolism , Gold/chemistry , Metal Nanoparticles/chemistry , Photosynthesis/physiology , Protozoan Proteins/chemistry , Quantum Dots , Biological Products/chemistry , Light , Materials Testing , Metal Nanoparticles/ultrastructure , Protozoan Proteins/ultrastructure , Scattering, Radiation , Surface Plasmon Resonance
12.
ScientificWorldJournal ; 2013: 670412, 2013.
Article in English | MEDLINE | ID: mdl-23533354

ABSTRACT

We investigate metal-enhanced fluorescence of peridinin-chlorophyll protein coupled to silver nanowires using optical microscopy combined with spectrally and time-resolved fluorescence techniques. In particular we study two different sample geometries: first, in which the light-harvesting complexes are deposited onto silver nanowires, and second, where solution of both nanostructures are mixed prior deposition on a substrate. The results indicate that for the peridinin-chlorophyll complexes placed in the vicinity of the silver nanowires we observe higher intensities of fluorescence emission as compared to the reference sample, where no nanowires are present. Enhancement factors estimated for the sample where the light-harvesting complexes are mixed together with the silver nanowires prior deposition on a substrate are generally larger in comparison to the other geometry of a hybrid nanostructure. While fluorescence spectra are identical both in terms of overall shape and maximum wavelength for peridinin-chlorophyll-protein complexes both isolated and coupled to metallic nanostructures, we conclude that interaction with plasmon excitations in the latter remains neutral to the functionality of the biological system. Fluorescence transients measured for the PCP complexes coupled to the silver nanowires indicate shortening of the fluorescence lifetime pointing towards modifications of radiative rate due to plasmonic interactions. Our results can be applied for developing ways to plasmonically control the light-harvesting capability of photosynthetic complexes.


Subject(s)
Carotenoids/chemistry , Chlorophyll/chemistry , Fluorescence , Light-Harvesting Protein Complexes/chemistry , Nanowires/chemistry , Protozoan Proteins/chemistry , Silver/chemistry , Dinoflagellida/chemistry , Microscopy, Electron, Scanning , Nanowires/ultrastructure , Protein Interaction Mapping/methods , Spectrometry, Fluorescence/methods
13.
Nanoscale Res Lett ; 8(1): 146, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23537310

ABSTRACT

In this work we demonstrate enhancement of the fluorescence collection efficiency for chlorophyll-containing photosynthetic complexes deposited on SiO2 spherical nanoparticles. Microscopic images of fluorescence emission reveal ring-like emission patterns associated with chlorophyll-containing complexes coupled to electromagnetic modes within the silica nanoparticles. The interaction leaves no effect upon the emission spectra of the complexes, and the transient behavior of the fluorescence also remains unchanged, which indicates no influence of the silica nanoparticles on the radiative properties of the fluorophores. We interpret this enhancement as a result of efficient scattering of electromagnetic field by the dielectric nanoparticles that increases collection efficiency of fluorescence emission.

14.
J Phys Chem B ; 116(42): 12706-13, 2012 Oct 25.
Article in English | MEDLINE | ID: mdl-23030378

ABSTRACT

In this paper, we propose a new way of thinking about molecular self-organization of the antibiotic amphotericin B (AmB) by examination of its N-iodoacetyl derivative (AmB-I). This choice was dictated by the simplicity of AmB-I crystallization as compared to pure AmB. The studies focus on spectroscopic investigations of the monocrystal and the amorphous state of AmB-I. The results of vibrational, FTIR, and Raman spectroscopy show differences between the crystalline and amorphous forms, in particular for bands attributed to C═O (1700-1730 cm(-1)) and C-C-H groups, as well as C═C-C (ca. 1010 cm(-1)) stretching vibrations. The process of crystallization is identified by strong differences in the intensities and locations of these characteristic bands. For the AmB-I crystals, the carbonyl band is shifted toward lower frequencies as a result of intensified hydrogen bonding in the crystalline form. Detailed analysis indicates that bands in the region characteristic for the C═C-C bending distortion in the chromophore are particularly intense for AmB-I in the crystalline form as compared to the intensity of this band in the amorphous state. These findings are corroborated by the results of fluorescence spectroscopy. We observe a much faster decay of the emission for the AmB-I monocrystal as compared to the DMSO solution of AmB-I. Interestingly, the fluorescence decay in the amorphous form requires three decay times for simulating the observed behavior; two of these decay constants are sufficient for estimating the decay measured for the AmB-I crystals. The proof of the molecular organization of AmB-I molecules is obtained from polarization-resolved fluorescence spectroscopy on a single AmB-I crystal. Strong anisotropy of the emission intensity correlates with the axes of the crystal, providing insight into actual alignment of the molecules in the AmB-I crystals. These findings related to molecular organization in AmB-I crystals are crucial for understanding toxicity mechanisms of the clinically used drug, amphotericin B.


Subject(s)
Amphotericin B/analogs & derivatives , Amphotericin B/chemistry , Dimethyl Sulfoxide/chemistry , Crystallization , Hydrogen Bonding , Molecular Conformation , Powder Diffraction , Spectrometry, Fluorescence , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...