Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunother ; 32(8): 856-69, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19752748

ABSTRACT

Immunotherapeutic vaccine is potentially an effective strategy to combat cancer. Essential components of an effective vaccine must include antigens that are processed by the major histocompatibility complex class I pathway, presented by the tumor major histocompatibility complex molecules, and an effective antigen delivery platform that is capable of breaking self-tolerance. In this study, we characterized a set of ovarian cancer-specific T-cell epitopes delivered by live-attenuated recombinant Listeria monocytogenes (Lm DeltaactADeltainlB) as a vaccine vector. We present data that peptide-specific T cells recognize the human monocytic cell line THP-1 infected with recombinant Lm DeltaactADeltainlB encoding the epitopes. Furthermore, we demonstrate that recombinant L. monocytogenes (Lm)-infected antigen-presenting cells can prime and expand epitope-specific CD8 T cells in vitro and such CD8 T cells recognize not only peptide-loaded targets but also ovarian and breast tumor cells presenting endogenous epitopes. Finally, peptide-specific T cells generated using peripheral blood mononuclear cell from ovarian cancer patients recognize target cells infected with recombinant Lm DeltaactADeltainlB encoding the epitopes. Our results demonstrate that live-attenuated recombinant Lm can be used effectively as a vehicle to deliver cancer peptide antigens singly or as a multiepitope construct. Thus, the use of recombinant live-attenuated Lm strains encoding endogenously processed and presented tumor epitopes/antigens represents an attractive strategy for active cancer immunotherapy in a clinical setting.


Subject(s)
Breast Neoplasms/therapy , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines , Listeria monocytogenes/immunology , Ovarian Neoplasms/therapy , Antigen Presentation , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Breast Neoplasms/immunology , Breast Neoplasms/pathology , CD8-Positive T-Lymphocytes/pathology , Cell Line, Tumor , Chromatography, High Pressure Liquid , Cloning, Molecular , Epitope Mapping , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/metabolism , Female , HLA-A2 Antigen/metabolism , Humans , Listeriosis/immunology , Lymphocyte Activation , Monocytes/immunology , Monocytes/metabolism , Monocytes/microbiology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology
2.
J Proteome Res ; 8(2): 595-602, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19099421

ABSTRACT

Changes in N-linked glycosylation are known to occur during the development of cancer. For example, we have previously reported changes in N-linked glycosylation that occur with the development of hepatocellular carcinoma (HCC) and, through the use of glycoproteomics, identified many of those proteins containing altered glycan structures. To advance these studies and further explore the glycoproteome, we performed N-linked glycan analysis from serum samples depleted of the major acute phase proteins, followed by targeted lectin extraction of those proteins containing changes in glycosylation. Using this method, changes in glycosylation, specifically increased amounts of core and outer arm fucosylation, were observed in the depleted samples. The identities of those proteins containing core and outer arm fucose were identified in the serum of patients with HCC. The usefulness of some of these proteins in the diagnosis of HCC was determined through the analysis of over 300 patient samples using a high-throughput plate based approach. Greatest performance was achieved with fucosylated hemopexin, which had an AUROC of 0.9515 with an optimal sensitivity of 92% and a specificity of 92%.


Subject(s)
Biomarkers, Tumor/blood , Carcinoma, Hepatocellular/diagnosis , Fucose/chemistry , Glycoproteins/blood , Liver Neoplasms/blood , Aged , Biomarkers, Tumor/chemistry , Blood Proteins/chemistry , Carcinoma, Hepatocellular/blood , Female , Glycoproteins/chemistry , Hemopexin/chemistry , Humans , Liver Neoplasms/diagnosis , Male , Mass Spectrometry , Middle Aged , Molecular Sequence Data , Polysaccharides/analysis , ROC Curve , Sensitivity and Specificity , alpha-2-HS-Glycoprotein
3.
J Virol ; 82(1): 435-50, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17942551

ABSTRACT

Protein sequences from multiple hepatitis B virus (HBV) isolates were analyzed for the presence of amino acid motifs characteristic of cytotoxic T-lymphocyte (CTL) and helper T-lymphocyte (HTL) epitopes with the goal of identifying conserved epitopes suitable for use in a therapeutic vaccine. Specifically, sequences bearing HLA-A1, -A2, -A3, -A24, -B7, and -DR supertype binding motifs were identified, synthesized as peptides, and tested for binding to soluble HLA. The immunogenicity of peptides that bound with moderate to high affinity subsequently was assessed using HLA transgenic mice (CTL) and HLA cross-reacting H-2(bxd) (BALB/c x C57BL/6J) mice (HTL). Through this process, 30 CTL and 16 HTL epitopes were selected as a set that would be the most useful for vaccine design, based on epitope conservation among HBV sequences and HLA-based predicted population coverage in diverse ethnic groups. A plasmid DNA-based vaccine encoding the epitopes as a single gene product, with each epitope separated by spacer residues to enhance appropriate epitope processing, was designed. Immunogenicity testing in mice demonstrated the induction of multiple CTL and HTL responses. Furthermore, as a complementary approach, mass spectrometry allowed the identification of correctly processed and major histocompatibility complex-presented epitopes from human cells transfected with the DNA plasmid. A heterologous prime-boost immunization with the plasmid DNA and a recombinant MVA gave further enhancement of the immune responses. Thus, a multiepitope therapeutic vaccine candidate capable of stimulating those cellular immune responses thought to be essential for controlling and clearing HBV infection was successfully designed and evaluated in vitro and in HLA transgenic mice.


Subject(s)
Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Hepatitis B Vaccines/genetics , Hepatitis B Vaccines/immunology , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/immunology , Immunotherapy/methods , Animals , Female , Hepatitis B Vaccines/therapeutic use , Hepatitis B virus/immunology , Immunization, Secondary , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Plasmids/genetics , Plasmids/immunology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Helper-Inducer/immunology , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Vaccinia virus/genetics , Viral Vaccines/genetics , Viral Vaccines/immunology
4.
J Cell Biochem ; 104(1): 136-49, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18004786

ABSTRACT

The association between elevated circulating levels of GP73 (and fucosylated GP73 in particular) and hepatocellular carcinoma suggests that a thorough analysis of the extent of GP73 glycosylation is warranted. Detailed analysis of the glycosylation patterns of such low abundance proteins are hampered by technical difficulties. Using conventional lectin affinity chromatography, we have established that three quarters of the GP73 secreted from a cell line derived from HCC is fucosylated. Using mass spectrometry, we have established that at least two of three potential sites of N-linked glycosylation are occupied on most molecules of GP73 secreted from cultured hepatoma cells. Furthermore, the oligosaccharides added to recombinant GP73 resemble those present in the bulk of secreted protein, mostly bi-antennary with core fucose, with a smaller fraction of tri- and tetra-antennary structures. The frequency of fucosylation observed on the recombinant protein agrees well with the pattern of lectin binding of the endogenous secreted protein. Finally, we have developed a method to interrogate the glycans added to either the near full length protein or at a particular sequon, providing proof of concept that a small peptide embedded in a heterologous context can preserve both fucosylation and a high level of branching of oligosaccharides added.


Subject(s)
Carcinoma, Hepatocellular/chemistry , Membrane Proteins/chemistry , Oligosaccharides, Branched-Chain/analysis , Chromatography, Affinity , Fucose/analysis , Glycosylation , Lectins , Neoplasm Proteins/analysis , Neoplasm Proteins/chemistry , Tumor Cells, Cultured
5.
J Virol ; 82(3): 1259-70, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18045939

ABSTRACT

Hepatitis B and C viruses are major causative agents of liver fibrosis, cirrhosis, and liver cancer. Using comparative glycoproteomics, we identified a glycoprotein that is altered both in amount and in glycosylation as a function of liver fibrosis and cirrhosis. Specifically, this altered glycoprotein is an immunoglobulin G (IgG) molecule reactive to the heterophilic alpha-Gal epitope [Galalpha-1-3Galbeta1-(3)4GlcNAc-R]. While similar changes in glycosylation have been observed in several autoimmune diseases, the specific immunoglobulins and their antigen recognition profiles were not determined. Thus, we provide the first report identifying the specific antigenic recognition profile of an immunoglobulin molecule containing altered glycosylation as a function of liver disease. This change in glycosylation allowed increased reactivity with several fucose binding lectins and permitted the development of a plate-based assay to measure this change. Increased lectin reactivity was observed in 100% of the more than 200 individuals with stage III or greater fibrosis and appeared to be correlated with the degree of fibrosis. The reason for the alteration in the glycosylation of anti-Gal IgG is currently unclear but may be related to the natural history of the disease and may be useful in the noninvasive detection of fibrosis and cirrhosis.


Subject(s)
Hepatitis C/complications , Immunoglobulin G/blood , Liver Cirrhosis/immunology , Adult , Hepacivirus , Humans , Lectins/metabolism , Middle Aged , Trisaccharides/immunology
6.
J Proteome Res ; 6(7): 2509-17, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17547437

ABSTRACT

Elimination of cancer through early detection and treatment is the ultimate goal of cancer research and is especially critical for ovarian and other forms of cancer typically diagnosed at very late stages that have very poor response rates. Proteomics has opened new avenues for the discovery of diagnostic and therapeutic targets. Immunoproteomics, which defines the subset of proteins involved in the immune response, holds considerable promise for providing a better understanding of the early-stage immune response to cancer as well as important insights into antigens that may be suitable for immunotherapy. Early administration of immunotherapeutic vaccines can potentially have profound effects on prevention of metastasis and may potentially cure through efficient and complete tumor elimination. We developed a mass-spectrometry-based method to identify novel autoantibody-based serum biomarkers for the early diagnosis of ovarian cancer that uses native tumor-associated proteins immunoprecipitated by autoantibodies from sera obtained from cancer patients and from cancer-free controls to identify autoantibody signatures that occur at high frequency only in cancer patient sera. Interestingly, we identified a subset of more than 50 autoantigens that were also processed and presented by MHC class I molecules on the surfaces of ovarian cancer cells and thus were common to the two immunological processes of humoral and cell-mediated immunity. These shared autoantigens were highly representative of families of proteins with roles in key processes in carcinogenesis and metastasis, such as cell cycle regulation, cell proliferation, apoptosis, tumor suppression, and cell adhesion. Autoantibodies appearing at the early stages of cancer suggest that this detectable immune response to the developing tumor can be exploited as early-stage biomarkers for the development of ovarian cancer diagnostics. Correspondingly, because the T-cell immune response depends on MHC class I processing and presentation of peptides, proteins that go through this pathway are potential candidates for the development of immunotherapeutics designed to activate a T-cell immune response to cancer. To the best of our knowledge, this is the first comprehensive study that identifies and categorizes proteins that are involved in both humoral and cell-mediated immunity against ovarian cancer, and it may have broad implications for the discovery and selection of theranostic molecular targets for cancer therapeutics and diagnostics in general.


Subject(s)
Autoantibodies/blood , Autoantigens/analysis , Histocompatibility Antigens Class I/analysis , Ovarian Neoplasms/immunology , Proteome/analysis , Proteomics/methods , Adult , Aged , Female , Humans , Mass Spectrometry , Middle Aged , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/therapy , Peptides/analysis , Proteome/immunology , T-Lymphocytes/immunology
7.
J Proteome Res ; 5(2): 308-15, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16457596

ABSTRACT

Changes in N-linked glycosylation are known to occur during the development of cancer. For example, increased branching of oligosaccharides has been associated with metastasis and has been correlated to tumor progression in human cancers of the breast, colon and melanomas. Increases in core fucosylation have also been associated with the development of hepatocellular carcinoma (HCC). Chronic infection with the hepatitis B virus is associated with more than 55% of all cases of hepatocellular carcinoma. We show here that increased levels of core fucosylation can be observed via glycan analysis of total serum and are associated with the development of HCC. In a blinded study, the serum glycoproteins derived from people diagnosed with HBV induced liver cancer were found to possess a dramatically higher level of fucosylation. This change occurs on both immunoglobulin molecules and on other serum glycoproteins. Targeted glycoproteomic analysis was used to identify those glycoproteins that are hyperfucosylated in cancer. In total, 19 proteins were found to be hyperfucosylated in cancer. The potential of these proteins as biomarkers of cancer is discussed.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/metabolism , Glycoproteins/blood , Liver Neoplasms/metabolism , Serum/metabolism , Carcinoma, Hepatocellular/complications , Carcinoma, Hepatocellular/virology , Electrophoresis, Gel, Two-Dimensional , Female , Glycosylation , Hepatitis B/complications , Humans , Immunoglobulins/blood , Liver Neoplasms/complications , Liver Neoplasms/virology , Male , Middle Aged
8.
Endocrinology ; 143(7): 2599-609, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12072392

ABSTRACT

Preprosomatostatin is a gene expressed ubiquitously among vertebrates, and at least two duplications of this gene have occurred during evolution. Somatostatin-28 (S-28) and somatostatin-14 (S-14), C-terminal products of prosomatostatin (ProS), are differentially expressed in mammalian neurons, D cells, and enterocytes. One pathway for the generation of S-14 entails the excision of Arg13-Lys14 in S-28, leading to equivalent amounts of S-28((1-12)). Using an antiserum (F-4), directed to the N-terminal region of S-28 that does not react with S-28((1-12)), we detected a peptide, in addition to S-28 and ProS, that was present in human plasma and in the intestinal tract of rats and monkeys. This F-4 reacting peptide was purified from monkey ileum; and its amino acid sequence, molecular mass, and chromatographic characteristics conformed to those of S-28((1-13)), a peptide not described heretofore. When extracts of the small intestine were measured by RIA, there was a discordance in the ratio of peptides reacting with F-4 and those containing the C terminus of ProS, suggesting sites of synthesis for S-28((1-13)) distinct from those for S-14 and S-28. This was supported by immunocytochemistry, wherein F-4 reactivity was localized in gastrointestinal (GI) endocrine cells and a widespread plexus of neurons within the wall of the distal gut while immunoreactivity to C-terminal domains of S-14 and S-28 in these neurons was absent. Further, F-4 immunoreactivity persisted in similar GI endocrine cells and myenteric neurons in mice with a targeted deletion of the preprosomatostatin gene. We believe that these data suggest a novel peptide produced in the mammalian gut, homologous with the 13 residues of the proximal region of S-28 but not derived from the ProS gene. Pending characterization of the gene from which this peptide is derived, its distribution, and function, we have designated this peptide as thrittene. Its localization in both GI endocrine cells and gut neurons suggests that thrittene may function as both a hormone and neurotransmitter.


Subject(s)
Digestive System/metabolism , Peptide Fragments/physiology , Somatostatin/physiology , Adult , Animals , Chromatography, Affinity , Chromatography, Gel , Chromatography, High Pressure Liquid , Humans , Immunohistochemistry , Macaca mulatta , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Precursors/biosynthesis , Protein Precursors/genetics , Radioimmunoassay , Rats , Rats, Wistar , Somatostatin/biosynthesis , Somatostatin/genetics , Somatostatin/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...