Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosurgery ; 94(4): 864-874, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37982637

ABSTRACT

BACKGROUND AND OBJECTIVES: Paralysis after spinal cord injury involves damage to pathways that connect neurons in the brain to peripheral nerves in the limbs. Re-establishing this communication using neural interfaces has the potential to bridge the gap and restore upper extremity function to people with high tetraplegia. We report a novel approach for restoring upper extremity function using selective peripheral nerve stimulation controlled by intracortical microelectrode recordings from sensorimotor networks, along with restoration of tactile sensation of the hand using intracortical microstimulation. METHODS: A 27-year-old right-handed man with AIS-B (motor-complete, sensory-incomplete) C3-C4 tetraplegia was enrolled into the clinical trial. Six 64-channel intracortical microelectrode arrays were implanted into left hemisphere regions involved in upper extremity function, including primary motor and sensory cortices, inferior frontal gyrus, and anterior intraparietal area. Nine 16-channel extraneural peripheral nerve electrodes were implanted to allow targeted stimulation of right median, ulnar (2), radial, axillary, musculocutaneous, suprascapular, lateral pectoral, and long thoracic nerves, to produce selective muscle contractions on demand. Proof-of-concept studies were performed to demonstrate feasibility of using a brain-machine interface to read from and write to the brain for restoring motor and sensory functions of the participant's own arm and hand. RESULTS: Multiunit neural activity that correlated with intended motor action was successfully recorded from intracortical arrays. Microstimulation of electrodes in somatosensory cortex produced repeatable sensory percepts of individual fingers for restoration of touch sensation. Selective electrical activation of peripheral nerves produced antigravity muscle contractions, resulting in functional movements that the participant was able to command under brain control to perform virtual and actual arm and hand movements. The system was well tolerated with no operative complications. CONCLUSION: The combination of implanted cortical electrodes and nerve cuff electrodes has the potential to create bidirectional restoration of motor and sensory functions of the arm and hand after neurological injury.


Subject(s)
Arm , Brain-Computer Interfaces , Adult , Humans , Male , Arm/innervation , Brain , Electrodes, Implanted , Hand/physiology , Quadriplegia , Upper Extremity , Clinical Trials as Topic
2.
medRxiv ; 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37162904

ABSTRACT

Background: Paralysis after spinal cord injury involves damage to pathways that connect neurons in the brain to peripheral nerves in the limbs. Re-establishing this communication using neural interfaces has the potential to bridge the gap and restore upper extremity function to people with high tetraplegia. Objective: We report a novel approach for restoring upper extremity function using selective peripheral nerve stimulation controlled by intracortical microelectrode recordings from sensorimotor networks, along with restoration of tactile sensation of the hand using intracortical microstimulation. Methods: A right-handed man with motor-complete C3-C4 tetraplegia was enrolled into the clinical trial. Six 64-channel intracortical microelectrode arrays were implanted into left hemisphere regions involved in upper extremity function, including primary motor and sensory cortices, inferior frontal gyrus, and anterior intraparietal area. Nine 16-channel extraneural peripheral nerve electrodes were implanted to allow targeted stimulation of right median, ulnar (2), radial, axillary, musculocutaneous, suprascapular, lateral pectoral, and long thoracic nerves, to produce selective muscle contractions on demand. Proof-of-concept studies were performed to demonstrate feasibility of a bidirectional brain-machine interface to restore function of the participant's own arm and hand. Results: Multi-unit neural activity that correlated with intended motor action was successfully recorded from intracortical arrays. Microstimulation of electrodes in somatosensory cortex produced repeatable sensory percepts of individual fingers for restoration of touch sensation. Selective electrical activation of peripheral nerves produced antigravity muscle contractions. The system was well tolerated with no operative complications. Conclusion: The combination of implanted cortical electrodes and nerve cuff electrodes has the potential to allow restoration of motor and sensory functions of the arm and hand after neurological injury.

3.
IEEE Trans Biomed Eng ; 67(6): 1707-1717, 2020 06.
Article in English | MEDLINE | ID: mdl-31545709

ABSTRACT

Prediction of movement intentions from electromyographic (EMG) signals is typically performed with a pattern recognition approach, wherein a short dataframe of raw EMG is compressed into an instantaneous feature-encoding that is meaningful for classification. However, EMG signals are time-varying, implying that a frame-wise approach may not sufficiently incorporate temporal context into predictions, leading to erratic and unstable prediction behavior. OBJECTIVE: We demonstrate that sequential prediction models and, specifically, temporal convolutional networks are able to leverage useful temporal information from EMG to achieve superior predictive performance. METHODS: We compare this approach to other sequential and frame-wise models predicting 3 simultaneous hand and wrist degrees-of-freedom from 2 amputee and 13 non-amputee human subjects in a minimally constrained experiment. We also compare these models on the publicly available Ninapro and CapgMyo amputee and non-amputee datasets. RESULTS: Temporal convolutional networks yield predictions that are more accurate and stable than frame-wise models, especially during inter-class transitions, with an average response delay of 4.6 ms and simpler feature-encoding. Their performance can be further improved with adaptive reinforcement training. SIGNIFICANCE: Sequential models that incorporate temporal information from EMG achieve superior movement prediction performance and these models allow for novel types of interactive training. CONCLUSIONS: Addressing EMG decoding as a sequential modeling problem will lead to enhancements in the reliability, responsiveness, and movement complexity available from prosthesis control systems.


Subject(s)
Amputees , Artificial Limbs , Electromyography , Hand , Humans , Movement , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...