Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Res ; 68(Suppl 4): S385-S388, 2019 12 30.
Article in English | MEDLINE | ID: mdl-32118468

ABSTRACT

Stem cells are undifferentiated elements capable to acquire a specific cellular phenotype under the influence of specific stimuli, thus being involved in tissue integrity and maintenance. In the skin tissue self-renewal and wound healing after injury is a complex process, especially in adulthood, due to the aging process and the continuous exposure to damaging agents. The importance of stem cells in regenerative medicine is well known and defining or improving their isolation methods is therefore a primary and crucial step. In the present paper we present a novel method to isolate stem cells from human skin, including the involvement of a novel medium for the maintenance and expansion of in vitro cultures. The biopsies were mechanically digested and put in culture. The migrating cells were positive selected with magnetic cell sorting, characterized by flow-cytometry analysis, and viability detected by MTT assay. Cells exhibited a mesenchymal phenotype, as demonstrated by the positive acquirement of an osteogenic or adipogenic phenotype when cultured in specific conditioned media. Taken together our results disclose a novel method for culturing and expanding stem cells from skin and pave the way for future clinical applications in tissue regeneration.


Subject(s)
Cell Separation/methods , Skin/cytology , Stem Cells , Humans
2.
Physiol Res ; 68(Suppl 4): S501-S508, 2019 12 30.
Article in English | MEDLINE | ID: mdl-32118482

ABSTRACT

The aim of the study was to evaluate the safety and efficacy of a new therapeutic approach to skin defects resulting from split thickness grafting. Within the study, nanofiber-based dressings fabricated using polyvinyl alcohol (PVA) and poly-ε-caprolactone (PCL) were used, with different mass density. The study was performed in 1 female minipig. Nine defects (approx. 4x4 cm) were made in the superficial skin layer. The tested materials were applied to the squared skin defect and covered by a Jelonet paraffin gauze, sutured in the corners of the defects. The animal was monitored daily during the healing process (21 days). On day 5, 12, and 27, the healing of the wound was evaluated, and a biopsy was performed for further histologic testing. At the end of the study (on day 27 after the procedure), the animal was euthanized, and a standard pathologic evaluation was performed. We can conclude that the nanofiber scaffold which was well tolerated, could be used as a smart skin cover which could be functionalized with another bioactive substances directly on the surgeon table, among potential bioactive substances belong platelet derivatives, antibiotics, etc.


Subject(s)
Bandages , Nanofibers/therapeutic use , Wound Healing , Animals , Polyesters , Polyvinyl Alcohol , Swine , Swine, Miniature
3.
Physiol Res ; 68(Suppl 4): S517-S525, 2019 12 30.
Article in English | MEDLINE | ID: mdl-32118484

ABSTRACT

The breakdown of intestinal anastomosis is a serious postsurgical complication. The worst complication is anastomotic leakage, resulting in contaminated peritoneal cavity, sepsis, multi-organ failure and even death. In problematic locations like the rectum, the leakage rate has not yet fallen below 10 %. Such a life-threatening condition is the result of impaired healing in the anastomotic wound. It is still vital to find innovative strategies and techniques in order to support regeneration of the anastomotic wound. This paper reviews the surgical techniques and biomaterials used, tested or published. Electrospun nanofibers are introduced as a novel and potential material in gastrointestinal surgery. Nanofibers possess several, unique, physical and chemical properties, that may effectively stimulate cell proliferation and collagen production; a key requirement for the healed intestinal wound.


Subject(s)
Anastomosis, Surgical , Intestines/surgery , Nanofibers/therapeutic use , Regeneration , Anastomotic Leak/prevention & control , Animals , Biocompatible Materials , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...