Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Evol Biol ; 30(10): 1910-1918, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28771863

ABSTRACT

Deficiency of food resources in ontogeny is known to prolong an organism's developmental time and affect body size in adulthood. Yet life-history traits are plastic: an organism can increase its growth rate to compensate for a period of slow growth, a phenomenon known as 'compensatory growth'. We tested whether larvae of the greater wax moth Galleria mellonella can accelerate their growth after a fast of 12, 24 or 72 h. We found that a subgroup of female larvae showed compensatory growth when starved for 12 h. Food deficiency lasting more than 12 h resulted in longer development and lower mass gain. Strength of encapsulation reactions against a foreign body inserted in haemocoel was the weakest in females that showed compensatory growth, whereas the strongest encapsulation was recorded in the males and females that fasted for 24 and 72 h. More specifically, we found sex-biased immune reactions so that females had stronger encapsulation rates than males in one group that fasted for 72 h. Overall, rapidly growing females had a short larval development period and the shortest adult lifespan. These results suggest that highly dynamic trade-offs between the environment, life-history traits and sex lead to plasticity in developmental strategies/growth rates in the greater wax moth.


Subject(s)
Moths/growth & development , Animals , Female , Food Deprivation/physiology , Larva/growth & development , Male , Sex Factors
3.
J Evol Biol ; 27(3): 541-50, 2014 03.
Article in English | MEDLINE | ID: mdl-24494599

ABSTRACT

Harmful parasite infestation can cause energetically costly behavioural and immunological responses, with the potential to reduce host fitness and survival. It has been hypothesized that the energetic costs of infection cause resting metabolic rate (RMR) to increase. Furthermore, under terminal investment theory, individuals exposed to pathogens should allocate resources to current reproduction when life expectancy is reduced, instead of concentrating resources on an immune defence. In this study, we activated the immune system of Tenebrio molitor males via insertion of nylon monofilament, conducted female preference tests to estimate attractiveness of male odours and assessed RMR and mortality. We found that attractiveness of males coincided with significant down-regulation of their encapsulation response against a parasite-like intruder. Activation of the immune system increased RMR only in males with heightened odour attractiveness and that later suffered higher mortality rates. The results suggest a link between high RMR and mortality and support terminal investment theory in T. molitor.


Subject(s)
Basal Metabolism , Coleoptera/metabolism , Animals , Coleoptera/physiology , Male , Odorants , Sexual Behavior, Animal , Survival Rate
4.
J Evol Biol ; 25(7): 1298-304, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22551159

ABSTRACT

Age-related decline in immune activity is referred to as immunosenescence and has been observed for both the adaptive immune response of vertebrates and the innate immune system of invertebrates. Because maintaining a basic level of immune defence and mounting an immune response is costly, optimal investment in immune function should vary over a wide range of individual states such as the individual's age. In this study, we tested whether the immune response and immunological priming within individuals become less efficient with age using mealworm beetles, Tenebrio molitor, as a model organism. We also tested whether ageing and immunological priming affected the odours produced by males. We found that young males of T. molitor were capable of mounting an immune response a sterile nylon monofilament implant with the potential to exhibit a simple form of immune memory through mechanisms of immune priming. Older males did not increase their immune response to a second immune challenge, which negatively affected their sexual attractiveness and remaining life span. Our results indicate that the immune system of older males in T. molitor is less effective, suggesting complex evolutionary trade-offs between ageing, immune response and sexual attractiveness.


Subject(s)
Tenebrio/immunology , Tenebrio/physiology , Aging , Animals , Female , Immunity, Innate , Immunologic Memory , Male , Odorants , Sex Attractants/physiology
5.
J Insect Sci ; 11: 56, 2011.
Article in English | MEDLINE | ID: mdl-21864151

ABSTRACT

Increasing evidence suggests that secondary sexual traits reflect immunocompetence of males in many animal species. This study experimentally investigated whether a parasite-like immunological challenge via a nylon implant affects sexual attractiveness of males in Tenebrio molitor L. (Coleoptera: Tenebrionidae) Although a single immunological challenge significantly reduced sexual attractiveness and locomotor activity of males, it had no adverse effect on their survival. A second immune challenge of the same males increased their attractiveness. However, it was found that the repeated challenge significantly reduced locomotor activity of males and caused higher mortality. This result indicates terminal investment on sexual signaling, which is supposedly based on a trade-off between pheromone production and energy expenditures needed for such activities as recovery of immune system and locomotor activity. When the third implantation was carried out in the same group of males, melanization of nylon implants was found to be lower in more attractive than in less attractive males. This suggests that males that became sexually attractive after the second immune challenge did not invest in recovery of their immune system.


Subject(s)
Mating Preference, Animal , Sex Characteristics , Tenebrio/immunology , Animals , Female , Immunocompetence , Male , Motor Activity , Nylons
SELECTION OF CITATIONS
SEARCH DETAIL
...