Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Biol ; 21(1)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37975194

ABSTRACT

The tubular network-forming slime moldPhysarum polycephalumis able to maintain long-scale contraction patterns driven by an actomyosin cortex. The resulting shuttle streaming in the network is crucial for the organism to respond to external stimuli and reorganize its body mass giving rise to complex behaviors. However, the chemical basis of the self-organized flow pattern is not fully understood. Here, we present ratiometric measurements of free intracellular calcium in simple morphologies ofPhysarumnetworks. The spatiotemporal patterns of the free calcium concentration reveal a nearly anti-correlated relation to the tube radius, suggesting that calcium is indeed a key regulator of the actomyosin activity. We compare the experimentally observed phase relation between the radius and the calcium concentration to the predictions of a theoretical model including calcium as an inhibitor. Numerical simulations of the model suggest that calcium indeed inhibits the contractions inPhysarum, although a quantitative difference to the experimentally measured phase relation remains. Unraveling the mechanism underlying the contraction patterns is a key step in gaining further insight into the principles ofPhysarum's complex behavior.


Subject(s)
Calcium , Physarum polycephalum , Actomyosin , Models, Theoretical , Actin Cytoskeleton , Physarum polycephalum/physiology
2.
Curr Biol ; 33(23): 5096-5108.e15, 2023 12 04.
Article in English | MEDLINE | ID: mdl-37979577

ABSTRACT

Embryos develop in a surrounding that guides key aspects of their development. For example, the anteroposterior (AP) body axis is always aligned with the geometric long axis of the surrounding eggshell in fruit flies and worms. The mechanisms that ensure convergence of the AP axis with the long axis of the eggshell remain unresolved. We investigate axis convergence in early C. elegans development, where the nascent AP axis, when misaligned, actively re-aligns to converge with the long axis of the egg. We identify two physical mechanisms that underlie axis convergence. First, bulk cytoplasmic flows, driven by actomyosin cortical flows, can directly reposition the AP axis. Second, active forces generated within the pseudocleavage furrow, a transient actomyosin structure similar to a contractile ring, can drive a mechanical re-orientation such that it becomes positioned perpendicular to the long axis of the egg. This in turn ensures AP axis convergence. Numerical simulations, together with experiments that either abolish the pseudocleavage furrow or change the shape of the egg, demonstrate that the pseudocleavage-furrow-dependent mechanism is a major driver of axis convergence. We conclude that active force generation within the actomyosin cortical layer drives axis convergence in the early nematode.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Actomyosin , Embryonic Development , Drosophila , Actin Cytoskeleton , Embryo, Nonmammalian
3.
Elife ; 112022 01 21.
Article in English | MEDLINE | ID: mdl-35060901

ABSTRACT

What is the origin of behaviour? Although typically associated with a nervous system, simple organisms also show complex behaviours. Among them, the slime mold Physarum polycephalum, a giant single cell, is ideally suited to study emergence of behaviour. Here, we show how locomotion and morphological adaptation behaviour emerge from self-organized patterns of rhythmic contractions of the actomyosin lining of the tubes making up the network-shaped organism. We quantify the spatio-temporal contraction dynamics by decomposing experimentally recorded contraction patterns into spatial contraction modes. Notably, we find a continuous spectrum of modes, as opposed to a few dominant modes. Our data suggests that the continuous spectrum of modes allows for dynamic transitions between a plethora of specific behaviours with transitions marked by highly irregular contraction states. By mapping specific behaviours to states of active contractions, we provide the basis to understand behaviour's complexity as a function of biomechanical dynamics.


Subject(s)
Biomechanical Phenomena/physiology , Cell Physiological Phenomena/physiology , Locomotion/physiology , Physarum polycephalum , Actomyosin/metabolism , Actomyosin/physiology , Physarum polycephalum/cytology , Physarum polycephalum/physiology
4.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33619174

ABSTRACT

The concept of memory is traditionally associated with organisms possessing a nervous system. However, even very simple organisms store information about past experiences to thrive in a complex environment-successfully exploiting nutrient sources, avoiding danger, and warding off predators. How can simple organisms encode information about their environment? We here follow how the giant unicellular slime mold Physarum polycephalum responds to a nutrient source. We find that the network-like body plan of the organism itself serves to encode the location of a nutrient source. The organism entirely consists of interlaced tubes of varying diameters. Now, we observe that these tubes grow and shrink in diameter in response to a nutrient source, thereby imprinting the nutrient's location in the tube diameter hierarchy. Combining theoretical model and experimental data, we reveal how memory is encoded: a nutrient source locally releases a softening agent that gets transported by the cytoplasmic flows within the tubular network. Tubes receiving a lot of softening agent grow in diameter at the expense of other tubes shrinking. Thereby, the tubes' capacities for flow-based transport get permanently upgraded toward the nutrient location, redirecting future decisions and migration. This demonstrates that nutrient location is stored in and retrieved from the networks' tube diameter hierarchy. Our findings explain how network-forming organisms like slime molds and fungi thrive in complex environments. We here identify a flow networks' version of associative memory-very likely of relevance for the plethora of living flow networks as well as for bioinspired design.


Subject(s)
Cytoplasm/metabolism , Models, Biological , Physarum polycephalum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...