Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 95(1): 017401, 2005 Jul 01.
Article in English | MEDLINE | ID: mdl-16090655

ABSTRACT

The synthesis of a unique isotope engineered system, double-wall carbon nanotubes with natural carbon outer and highly 13C enriched inner walls, is reported from isotope enriched fullerenes encapsulated in single-wall carbon nanotubes (SWCNTs). The material allows the observation of the D line of the highly defect-free inner tubes that can be related to a curvature induced enhancement of the electron-phonon coupling. Ab initio calculations explain the inhomogeneous broadening of inner tube Raman modes due to the distribution of different isotopes. Nuclear magnetic resonance shows a significant contrast of the isotope enriched inner SWCNTs compared to other carbon phases and provides a macroscopic measure of the inner tube mass content. The high curvature of the small diameter inner tubes manifests in an increased distribution of the chemical shift tensor components.

2.
Phys Rev Lett ; 90(22): 225501, 2003 Jun 06.
Article in English | MEDLINE | ID: mdl-12857318

ABSTRACT

Double wall carbon nanotubes were prepared by vacuum annealing of single wall carbon nanotubes filled with C60. Strong evidence is provided for a highly defect free and unperturbed environment in the interior of the tubes. This is concluded from unusual narrow Raman lines for the radial breathing mode of the inner tubes. Lorentzian linewidths scale down to 0.35 cm(-1) which is almost 10 times smaller than linewidths reported so far for this mode. A splitting is observed for the majority of the Raman lines. It is considered to originate from tube-tube interaction between one inner tube and several different outer tubes. The highest RBM frequency detected is 484 cm(-1) corresponding to a tube diameter of only 0.50 nm. Labeling of the Raman lines with the folding vector is provided for all inner tubes. This labeling is supported by density functional calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...