Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36986500

ABSTRACT

Tracers for bimodal optical imaging and positron emission tomography unite multiple advantages in a single molecule. Their tumor-specific uptake can be visualized after their PET activation by radiofluorination via PET/CT or PET/MRI allowing for staging or therapy planning, while their non-radioactive moiety additionally facilitates the visualization of malignant tissue during intraoperative fluorescence-guided surgery or in histological assessments. The silicon-bridged xanthene core offers the opportunity for radiofluorination with SiFA isotope exchange to obtain a small-molecule, PET-activatable NIR dye that can be linked to different target vectors. Herein, we demonstrate for the first time the PET-activation of a fluorinated silicon pyronine, belonging to a class of low-molecular-weight fluorescence dyes with a large Stokes shift (up to 129 nm) and solvent-dependent NIR dye properties, with a successful radiochemical conversion of 70%. The non-fluorinated pyronine precursor is easily accessible by a three-step sequence from commercially starting material with a 12% overall yield. Moreover, a library of seven unusually functionalized (by approximately 15 nm), red-shifted silicon rhodamines were synthesized in three- to four-step sequences and the optical properties of the novel dyes were characterized. It was also shown that the synthesized silicon rhodamine dyes can be easily conjugated by amide bond formation or 'click-reaction' approaches.

2.
EJNMMI Radiopharm Chem ; 7(1): 15, 2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35751707

ABSTRACT

BACKGROUND: Positron emission tomography (PET) is a powerful tool in medical imaging, especially in combination with the PET radionuclide fluorine-18 that possesses optimal characteristics. For labelling of biomolecules and low-molecular weight tracers, fluorine-18 can be covalently bound to silicon by either nucleophilic replacements of leaving groups (like ethers) or by isotope exchange of fluorine-19. While nucleophilic substitutions require additional purification steps for the removal of contaminants, isotope exchange with fluorine-18 results in low molar activity. Both challenges can be addressed with a detagging-fluorination of an immobilized silyl ether motif. RESULTS: By overcoming the susceptibility towards hydrolysis, optimized detagging conditions (improved reaction time, fluorination reagent, linker, and resin) could afford the highly sterically hindered silyl fluoride motifs, that are commonly applied in radiochemistry in small and semipreparative scales. The described reaction conditions with fluorine-19 are transferrable to conditions with [18F]fluoride and silyl fluorides were obtained after approx. 10 min reaction time and in high-purity after mechanical filtration. CONCLUSIONS: We present a proof-of-concept study for a detagging-fluorination of two silyl ethers that are bound to an optimized amino alcohol resin. We show with our model substrate that our solid-phase linker combination is capable of yielding the desired silicon fluoride in amounts sufficient for biological studies in animals or humans under standard fluorination conditions that may also be transferred to a radiolabelling setting. In conclusion, our presented approach could optimize the molar activity and simplify the preparation of radiofluorinated silyl fluorides.

3.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34832938

ABSTRACT

Radiolabeled fluorescent dyes are decisive for bimodal imaging as well as highly in demand for nuclear- and optical imaging. Silicon-rhodamines (SiRs) show unique near-infrared (NIR) optical properties, large quantum yields and extinction coefficients as well as high photostability. Here, we describe the synthesis, characterization and radiolabeling of novel NIR absorbing and emitting fluorophores from the silicon-rhodamine family for use in optical imaging (OI) combined with positron emission tomography (PET) or single photon emission computed tomography (SPECT), respectively. The presented photostable SiRs were characterized using NMR-, UV-Vis-NIR-spectroscopy and mass spectrometry. Moreover, the radiolabeling conditions using fluorine-18 or iodine-123 were extensively explored. After optimization, the radiofluorinated NIR imaging agents were obtained with radiochemical conversions (RCC) up to 70% and isolated radiochemical yields (RCY) up to 54% at molar activities of g.t. 70 GBq/µmol. Radioiodination delivered RCCs over 92% and allowed to isolate the 123I-labeled product in RCY of 54% at a molar activity of g.t. 7.6 TBq/µmol. The radiofluorinated SiRs exhibit in vitro stabilities g.t. 70% after two hours in human serum. The first described radiolabeled SiRs are a promising step toward their further development as multimodal PET/SPECT-NIR imaging agents for planning and subsequent imaging-guided oncological surgery.

SELECTION OF CITATIONS
SEARCH DETAIL
...