Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 42(31): 2402-2414, 2023 07.
Article in English | MEDLINE | ID: mdl-37393340

ABSTRACT

The International Agency for Research on Cancer determined that obesity is the primary preventable cause of breast cancer. The nuclear receptor peroxisome proliferator activated receptor γ (PPARγ) binds inflammatory mediators in obesity and its expression is reduced in human breast cancer. We created a new model to better understand how the obese microenvironment alters nuclear receptor function in breast cancer. The obesity related cancer phenotype was PPARγ dependent; deletion of PPARγ in mammary epithelium which is a tumor suppressor in lean mice unexpectedly increased tumor latency, reduced the luminal progenitor (LP) tumor cell fraction, and increased autophagic and senescent cells. Loss of PPARγ expression in mammary epithelium of obese mice increased expression of 2-aminoadipate semialdehyde synthase (AASS) which regulates lysine catabolism to acetoacetate. PPARγ-associated co-repressors and activators regulated AASS expression via a canonical response element. AASS expression was significantly reduced in human breast cancer, and AASS overexpression or acetoacetate treatment inhibited proliferation and induced autophagy and senescence in human breast cancer cell lines. Genetic or pharmacologic HDAC inhibition promoted autophagy and senescence in mammary tumor cells in vitro and in vivo. We concluded that lysine metabolism is a novel metabolic tumor suppressor pathway in breast cancer.


Subject(s)
Breast Neoplasms , Mice , Humans , Animals , Female , Breast Neoplasms/pathology , PPAR gamma/genetics , Lysine , Acetoacetates , Obesity , Tumor Microenvironment
2.
J Struct Biol ; 212(1): 107597, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32758526

ABSTRACT

Teeth are comprised of three unique mineralized tissues, enamel, dentin, and cementum, that are susceptible to developmental defects similar to those affecting bone. X-linked hypophosphatemia (XLH), caused by PHEX mutations, leads to increased fibroblast growth factor 23 (FGF23)-driven hypophosphatemia and local extracellular matrix disturbances. Hypophosphatasia (HPP), caused by ALPL mutations, results in increased levels of inorganic pyrophosphate (PPi), a mineralization inhibitor. Generalized arterial calcification in infancy (GACI), caused by ENPP1 mutations, results in vascular calcification due to decreased PPi, later compounded by FGF23-driven hypophosphatemia. In this perspective, we compare and contrast dental defects in primary teeth associated with XLH, HPP, and GACI, briefly reviewing genetic and biochemical features of these disorders and findings of clinical and preclinical studies to date, including some of our own recent observations. The distinct dental defects associated with the three heritable mineralization disorders reflect unique processes of the respective dental hard tissues, revealing insights into their development and clues about pathological mechanisms underlying such disorders.


Subject(s)
Calcification, Physiologic/physiology , Tooth/physiology , Alkaline Phosphatase/metabolism , Animals , Extracellular Matrix/metabolism , Extracellular Matrix/physiology , Familial Hypophosphatemic Rickets/metabolism , Familial Hypophosphatemic Rickets/physiopathology , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/metabolism , Humans , Hypophosphatasia/metabolism , Hypophosphatasia/physiopathology , Tooth/metabolism , Vascular Calcification/metabolism , Vascular Calcification/physiopathology
3.
Genesis ; 56(6-7): e23220, 2018 06.
Article in English | MEDLINE | ID: mdl-30134066

ABSTRACT

Craniosynostosis is defined as congenital premature fusion of one or more cranial sutures. While the genetic basis for about 30% of cases is known, the causative genes for the diverse presentations of the remainder of cases are unknown. The recently discovered cranial suture stem cell population affords an opportunity to identify early signaling pathways that contribute to craniosynostosis. We previously demonstrated that enhanced BMP signaling in neural crest cells (caA3 mutants) leads to premature cranial suture fusion resulting in midline craniosynostosis. Since enhanced mTOR signaling in neural crest cells leads to craniofacial bone lesions, we investigated the extent to which mTOR signaling is involved in the pathogenesis of BMP-mediated craniosynostosis by affecting the suture stem cell population. Our results demonstrate a loss of suture stem cells in the caA3 mutant mice by the newborn stage. We have found increased activation of mTOR signaling in caA3 mutant mice during embryonic stages, but not at the newborn stage. Our study demonstrated that inhibition of mTOR signaling via rapamycin in a time specific manner partially rescued the loss of the suture stem cell population. This study provides insight into how enhanced BMP signaling regulates suture stem cells via mTOR activation.


Subject(s)
Craniosynostoses/genetics , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/drug effects , Animals , Bone Morphogenetic Proteins/drug effects , Bone Morphogenetic Proteins/physiology , Cranial Sutures/embryology , Craniosynostoses/drug therapy , Disease Models, Animal , Mice , Mice, Inbred C57BL , Neural Crest/metabolism , Phenotype , Signal Transduction/drug effects , Sirolimus/metabolism , Skull/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...