Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
ChemSusChem ; : e202400351, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700386

ABSTRACT

The carbon-free chemical storage and release of renewable energy is an important task to drastically reduce CO2 emissions. The high specific energy density of iron and its recyclability makes it a promising storage material. Energy release by oxidation with air can be realized by the combustion of micron-sized iron powders in retro-fitted coal fired power plants and in fixed-bed reactors under milder conditions. An experimental parameter study of iron powder oxidation with air was conducted based on thermogravimetric analysis in combination with wide-angle X-ray scattering and Mössbauer spectroscopy. In agreement with literature the oxidation was found to consist of a very fast initial oxidation of the outer particle layer followed by much slower oxidation due to diffusion of iron ions through the Fe2O3/Fe3O4 layer being the rate-limiting step. Scanning electron microscopy analysis of the iron particle before and after oxidation reveal a strong particle morphology transformation. This impact on the reaction was studied by cyclization experiments. Up to 10 oxidation-reduction cycles show that both, oxidation and reduction rates, increase strongly with cycling due to increased porosity.

2.
ACS Appl Energy Mater ; 7(9): 4076-4087, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38756864

ABSTRACT

The use of precious metal electrocatalysts in clean electrochemical energy conversion and storage applications is widespread, but the sustainability of these materials, in terms of their availability and cost, is constrained. In this research, iron triad-based bimetallic nitrogen-doped carbon (M-N-C) materials were investigated as potential bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The synthesis of bimetallic FeCo-N-C, CoNi-N-C, and FeNi-N-C catalysts involved a precisely optimized carbonization process of their respective metal-organic precursors. Comprehensive structural analysis was undertaken to elucidate the morphology of the prepared M-N-C materials, while their electrocatalytic performance was assessed through cyclic voltammetry and rotating disk electrode measurements in a 0.1 M KOH solution. All bimetallic catalyst materials demonstrated impressive bifunctional electrocatalytic performance in both the ORR and the OER. However, the FeNi-N-C catalyst proved notably more stable, particularly in the OER conditions. Employed as a bifunctional catalyst for ORR/OER within a customized zinc-air battery, FeNi-N-C exhibited a remarkable discharge-charge voltage gap of only 0.86 V, alongside a peak power density of 60 mW cm-2. The outstanding stability of FeNi-N-C, operational for about 55 h at 2 mA cm-2, highlights its robustness for prolonged application.

3.
J Am Chem Soc ; 146(18): 12496-12510, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38630640

ABSTRACT

Nuclear forward scattering (NFS) is a synchrotron-based technique relying on the recoil-free nuclear resonance effect similar to Mössbauer spectroscopy. In this work, we introduce NFS for in situ and operando measurements during electrocatalytic reactions. The technique enables faster data acquisition and better discrimination of certain iron sites in comparison to Mössbauer spectroscopy. It is directly accessible at various synchrotrons to a broad community of researchers and is applicable to multiple metal isotopes. We demonstrate the power of this technique with the hydrogen evolution mechanism of an immobilized iron porphyrin supported on carbon. Such catalysts are often considered as model systems for iron-nitrogen-carbon (FeNC) catalysts. Using in situ and operando NFS in combination with theoretical predictions of spectroscopic data enables the identification of the intermediate that is formed prior to the rate-determining step. The conclusions on the reaction mechanism can be used for future optimization of immobilized molecular catalysts and metal-nitrogen-carbon (MNC) catalysts.

4.
JACS Au ; 4(3): 940-950, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38559729

ABSTRACT

FeN4 motifs, found, for instance, in bioinorganic chemistry as heme-type cofactors, play a crucial role in man-made FeNC catalysts for the oxygen reduction reaction. Such single-atom catalysts are a potential alternative to platinum-based catalysts in fuel cells. Since FeNC catalysts are prepared via pyrolysis, the resulting materials are amorphous and contain side phases and impurities. Therefore, the geometric and electronic nature of the catalytically active FeN4 site remains to be clarified. To further understand the behavior of FeN4 centers in electrochemistry and their expected spectroscopic behavior upon reduction, we investigate two FeN4 environments (pyrrolic and pyridinic). These are represented by the model complexes [Fe(TPP)Cl] and [Fe(phen2N2)Cl], where TPP = tetraphenylporphyrin and phen = 1,10-phenanthroline. We predict their Mössbauer, UV-vis, and NRV spectral data using density functional theory as windows into their electronic structure differences. By varying the axial ligand, we further show how well small chemical changes in both complexes can be discerned. We find that the differences in ligand field strength in pyrrolic and pyridinic coordination result in different spin ground states, which in turn leads to distinct Mössbauer spectroscopic properties. As a result, pyrrolic nitrogen donors with a weaker ligand field are predicted to show more pronounced spectroscopic differences under in situ and operando conditions, while pyridinic nitrogen donors are expected to show less pronounced spectroscopic changes upon reduction and/or ligand loss. We therefore suggest that a weaker ligand field leads to better detectability of catalytic intermediates in in situ and operando experiments.

5.
Phys Chem Chem Phys ; 26(17): 13049-13060, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38598198

ABSTRACT

Iron is an abundant and non-toxic element that holds great potential as energy carrier for large-scale and long-term energy storage. While from a general viewpoint iron oxidation is well-known, the detailed kinetics of oxidation for micrometer sized particles are missing, but required to enable large-scale utilization for energy production. In this work, iron particles are subjected to temperature-programmed oxidation. By dilution with boron nitride a sintering of the particles is prevented enabling to follow single particle effects. The mass fractions of iron and its oxides are determined for different oxidation times using Mössbauer spectroscopy. On the basis of the extracted phase compositions obtained at different times and temperatures (600-700 °C), it can be concluded that also for particles the oxidation follows a parabolic rate law. The parabolic rate constants are determined in this transition region. Knowledge of the particle size distribution and its consideration in modeling the oxidation kinetics of iron powder has proven to be crucial.

6.
Adv Mater ; 35(32): e2300907, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37132284

ABSTRACT

Iron-nitrogen-carbon (FeNC) materials have emerged as a promising alternative to platinum-group metals for catalyzing the oxygen reduction reaction (ORR) in proton-exchange-membrane fuel cells. However, their low intrinsic activity and stability are major impediments. Herein, an FeN-C electrocatalyst with dense FeN4 sites on hierarchically porous carbons with highly curved surfaces (denoted as FeN4 -hcC) is reported. The FeN4 -hcC catalyst displays exceptional ORR activity in acidic media, with a high half-wave potential of 0.85 V (versus reversible hydrogen electrode) in 0.5 m H2 SO4 . When integrated into a membrane electrode assembly, the corresponding cathode displays a high maximum peak power density of 0.592 W cm-2 and demonstrates operating durability over 30 000 cycles under harsh H2 /air conditions, outperforming previously reported Fe-NC electrocatalysts. These experimental and theoretical studies suggest that the curved carbon support fine-tunes the local coordination environment, lowers the energies of the Fe d-band centers, and inhibits the adsorption of oxygenated species, which can enhance the ORR activity and stability. This work provides new insight into the carbon nanostructure-activity correlation for ORR catalysis. It also offers a new approach to designing advanced single-metal-site catalysts for energy-conversion applications.

7.
Chemistry ; 29(10): e202202465, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36301727

ABSTRACT

For a future hydrogen economy, non-precious metal catalysts for the water splitting reactions are needed that can be implemented on a global scale. Metal-nitrogen-carbon (MNC) catalysts with active sites constituting a metal center with fourfold coordination of nitrogen (MN4 ) show promising performance, but an optimization rooted in structure-property relationships has been hampered by their low structural definition. Porphyrin model complexes are studied to transfer insights from well-defined molecules to MNC systems. This work combines experiment and theory to evaluate the influence of porphyrin substituents on the electronic and electrocatalytic properties of MN4 centers with respect to the hydrogen evolution reaction (HER) in aqueous electrolyte. We found that the choice of substituent affects their utilization on the carbon support and their electrocatalytic performance. We propose an HER mechanism for supported iron porphyrin complexes involving a [FeII (P⋅)]- radical anion intermediate, in which a porphinic nitrogen atom acts as an internal base. While this work focuses on the HER, the limited influence of a simultaneous interaction with the support and an aqueous electrolyte will likely be transferrable to other catalytic applications.

9.
J Am Chem Soc ; 144(37): 16827-16840, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36036727

ABSTRACT

For large-scale utilization of fuel cells in a future hydrogen-based energy economy, affordable and environmentally benign catalysts are needed. Pyrolytically obtained metal- and nitrogen-doped carbon (MNC) catalysts are key contenders for this task. Their systematic improvement requires detailed knowledge of the active site composition and degradation mechanisms. In FeNC catalysts, the active site is an iron ion coordinated by nitrogen atoms embedded in an extended graphene sheet. Herein, we build an active site model from in situ and operando 57Fe Mössbauer spectroscopy and quantum chemistry. A Mössbauer signal newly emerging under operando conditions, D4, is correlated with the loss of other Mössbauer signatures (D2, D3a, D3b), implying a direct structural correspondence. Pyrrolic N-coordination, i.e., FeN4C12, is found as a spectroscopically and thermodynamically consistent model for the entire catalytic cycle, in contrast to pyridinic nitrogen coordination. These findings thus overcome the previously conflicting structural assignments for the active site and, moreover, identify and structurally assign a previously unknown intermediate in the oxygen reduction reaction at FeNC catalysts.

10.
J Am Chem Soc ; 144(30): 13487-13498, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35862859

ABSTRACT

The experimental development of catalytically ever-more active platinum group metal (PGM)-free materials for the oxygen reduction reaction (ORR) at fuel cell cathodes has been until recently a rather empirical iteration of synthesis and testing. Here, we present how kinetic reactivity maps based on kinetic descriptors of PGM-free single-metal-site ORR electrocatalysts can help to better understand the origin of catalytic reactivity and help to derive rational synthetic guidelines toward improved catalysts. Key in our analysis are the catalytic surface site density (SD) and the catalytic turnover frequency (TOF) in their role as controlling kinetic parameters for the ORR reactivity of PGM-free nitrogen-coordinated single-metal M-site carbon (MNC) catalysts. SD-TOF plots establish two-dimensional reactivity maps. We also consider the ratio between SD and the total number of single-metal sites in the bulk, referred to as the site utilization factor, which we propose as another guiding parameter for optimizing the synthesis of MNC catalysts. Exemplified by two sets of FeNC, CoNC, and SnNC catalysts prepared using two distinctly different N- and C-precursor material classes (Zn-based zeolitic imidazolate frameworks and covalent polyaniline), we comparatively diagnose the intrinsic kinetic ORR parameters as well as structural, morphological, and chemical properties. From there, we derive and discuss possible synthetic guidelines for further improvements. Our approach can be extended to other families of catalysts and may involve kinetic performance data of idealized liquid-electrolyte cells as well as gas diffusion layer-type flow cells.

11.
Mater Horiz ; 9(1): 417-424, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34762085

ABSTRACT

As the alternatives to expensive Pt-based materials for the oxygen reduction reaction (ORR), iron/nitrogen co-doped carbon catalysts (FeNC) with dense FeNx active sites are promising candidates to promote the commercialization of proton exchange membrane fuel cells. Herein, we report a synthetic approach using perfluorotetradecanoic acid (PFTA)-modified metal-organic frameworks as precursors for the synthesis of fluorine-doped FeNC (F-FeNC) with improved ORR performance. The utilization of PFTA surfactants causes profound changes of the catalyst structure including F-doping into graphitic carbon, increased micropore surface area and Brunauer-Emmett-Teller (BET) surface area (up to 1085 m2 g-1), as well as dense FeNx sites. The F-FeNC catalyst exhibits an improved ORR activity with a high E1/2 of 0.83 V (VS. RHE) compared to the pristine FeNC material (E1/2 = 0.80 V). A fast decay occurs in the first 10 000 potential cycles for the F-FeNC catalyst, but high durability is still maintained up to another 50 000 cycles. Density functional theory calculations reveal that the strongly withdrawing fluorine atoms doped on the graphitic carbon can optimize the electronic structure of the FeNx active center and decrease the adsorption energy of ORR intermediates.

12.
Philos Trans A Math Phys Eng Sci ; 379(2209): 20200337, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34510925

ABSTRACT

In this work, the effect of porphyrin loading and template size is varied systematically to study its impact on the oxygen reduction reaction (ORR) activity and selectivity as followed by rotating ring disc electrode experiments in both acidic and alkaline electrolytes. The structural composition and morphology are investigated by 57Fe Mössbauer spectroscopy, transmission electron microscopy, Raman spectroscopy and Brunauer-Emmett-Teller analysis. It is shown that with decreasing template size, specifically the ORR performance towards fuel cell application gets improved, while at constant area loading of the iron precursor (here expressed in number of porphyrin layers), the iron signature does not change much. Moreover, it is well illustrated that too large area loadings result in the formation of undesired side phases that also cause a decrease in the performance, specifically in acidic electrolyte. Thus, if the impact of morphology is the focus of research it is important to consider the area loading rather than its weight loading. At constant weight loading, beside morphology the structural composition can also change and impact the catalytic performance. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 2)'.

13.
Phys Chem Chem Phys ; 23(15): 9147-9157, 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33885106

ABSTRACT

Pt-group metal (PGM)-free catalysts of the Me-N-C type based on abundant and inexpensive elements have gained importance in the field of oxygen reduction reaction (ORR) electrocatalysis due to their promising ORR-activities. Their insufficient stability, however, has fueled the interest in obtaining an in-depth understanding of their composition, which requires highly sensitive techniques compatible with their low metal contents (typically <5 wt%). In the particular context of iron-based materials, 57Fe-Mössbauer spectroscopy is often used to provide such compositional information, but requires (partially) 57Fe-enriched precursors. As a consequence, the extrapolation of conclusions drawn from Mössbauer measurements on 57Fe-enriched catalysts to equivalent materials with the standard isotope distribution relies on the assumption that the metal precursor's isotopic profile does not affect the catalysts' composition and ORR-activity. To verify this hypothesis, in this study we prepared two series of Fe-based catalysts using distinctively different synthesis approaches and various relative contents of 57Fe-enriched precursors, and observed that the extent of the latter parameter significantly affected the catalysts' ORR-activity. This effect was successfully correlated with the Fe-speciation of the catalysts inferred from the characterization of these samples with Mössbauer and X-ray absorption spectroscopies. Ultimately, these results highlight the crucial importance of verifying the consistency of the catalysts' activity and composition upon comparing standard and 57Fe-enriched samples.

14.
Chemistry ; 27(38): 9763-9767, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-33908660

ABSTRACT

A new vacancy ordered, anion deficient perovskite modification with composition of BaCoO2.67 (Ba3 Co3 O8 □1 ) has been prepared via a two-step heating process. Combined Rietveld analysis of neutron and X-ray powder diffraction data shows a novel ordering of oxygen vacancies not known before for barium cobaltates. A combination of neutron powder diffraction, magnetic measurements, and density functional theory (DFT) studies confirms G-type antiferromagnetic ordering. From impedance measurements, the electronic conductivity of the order of 10-4  S cm-1 is determined. Remarkably, the bifunctional catalytic activity for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is found to be comparable to that of Ba0.5 Sr0.5 Co0.8 Fe0.2 O3-y , confirming that charge-ordered anion deficient non-cubic perovskites can be highly efficient catalysts.

15.
Angew Chem Int Ed Engl ; 60(21): 11707-11712, 2021 May 17.
Article in English | MEDLINE | ID: mdl-33605017

ABSTRACT

The commercial success of the electrochemical energy conversion technologies required for the decarbonization of the energy sector requires the replacement of the noble metal-based electrocatalysts currently used in (co-)electrolyzers and fuel cells with inexpensive, platinum-group metal-free analogs. Among these, Fe/N/C-type catalysts display promising performances for the reduction of O2 or CO2 , but their insufficient activity and stability jeopardize their implementation in such devices. To circumvent these issues, a better understanding of the local geometric and electronic structure of their catalytic active sites under reaction conditions is needed. Herein we shed light on the electronic structure of the molecular sites in two Fe/N/C catalysts by probing their average spin state with X-ray emission spectroscopy (XES). Chiefly, our in situ XES measurements reveal for the first time the existence of reversible, potential-induced spin state changes in these materials.

16.
Chem Commun (Camb) ; 57(7): 859-862, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33427246

ABSTRACT

Single-atom catalysts (SACs) activate small molecules, e.g. the oxygen reduction reaction is catalysed by FeNC materials. Because the nature of active site(s) in this type of SAC is unclear, spectroscopic and computational insights are needed to clarify the atomistic composition and electronic structure. Using quantum chemistry, we show that key features of [Fe{phen2A2}L]n+ complexes (A = CH, N with n = 0, A = O with n = 0, 2; L = OH-, Cl-) can be differentiated spectroscopically.

17.
Phys Chem Chem Phys ; 23(1): 563-573, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33326518

ABSTRACT

Two iridium-based catalysts (namely IrSn and IrNi) are synthesised via a polyol route involving capping agents. The capping agents are removed according to a time-consuming multistep heat-treatment protocol described in the literature (N2 → N2/O2 → H2). In this work the effect of each of these steps on the structural composition and catalytic activity is investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and electrochemistry. It is shown that heating in nitrogen is not required, whereas air is the most effective for the removal of the capping agents. Besides FT-IR, the analysis of sp3 carbon (from XPS) turned out to give reasonable insights into capping agent removal. Induced by hydrogen treatment no further change of the surface occurs, while particles tend to grow and become more crystalline. While structural changes are similar for both catalysts, the impact of each of the steps on the catalysis is different: the activity per gram of iridium becomes even lower for IrSn (an electrochemical cleaning agent that was used as reference measurements, seems best suited) while the activity is doubled for the IrNi case. Our results illustrate that the selection of the cleaning procedure strongly depends on the investigated system and should be optimised individually.

18.
Nat Mater ; 19(11): 1215-1223, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32661387

ABSTRACT

This contribution reports the discovery and analysis of a p-block Sn-based catalyst for the electroreduction of molecular oxygen in acidic conditions at fuel cell cathodes; the catalyst is free of platinum-group metals and contains single-metal-atom actives sites coordinated by nitrogen. The prepared SnNC catalysts meet and exceed state-of-the-art FeNC catalysts in terms of intrinsic catalytic turn-over frequency and hydrogen-air fuel cell power density. The SnNC-NH3 catalysts displayed a 40-50% higher current density than FeNC-NH3 at cell voltages below 0.7 V. Additional benefits include a highly favourable selectivity for the four-electron reduction pathway and a Fenton-inactive character of Sn. A range of analytical techniques combined with density functional theory calculations indicate that stannic Sn(IV)Nx single-metal sites with moderate oxygen chemisorption properties and low pyridinic N coordination numbers act as catalytically active moieties. The superior proton-exchange membrane fuel cell performance of SnNC cathode catalysts under realistic, hydrogen-air fuel cell conditions, particularly after NH3 activation treatment, makes them a promising alternative to today's state-of-the-art Fe-based catalysts.

19.
Chem Sci ; 12(1): 384-396, 2020 Oct 13.
Article in English | MEDLINE | ID: mdl-34168745

ABSTRACT

Pyrolyzed iron-based platinum group metal (PGM)-free nitrogen-doped single site carbon catalysts (Fe-NC) are possible alternatives to platinum-based carbon catalysts for the oxygen reduction reaction (ORR). Bimetallic PGM-free M1M2-NC catalysts and their active sites, however, have been poorly studied to date. The present study explores the active accessible sites of mono- and bimetallic Fe-NC and FeNi-NC catalysts. Combining CO cryo chemisorption, X-ray absorption and 57Fe Mössbauer spectroscopy, we evaluate the number and chemical state of metal sites at the surface of the catalysts along with an estimate of their dispersion and utilization. Fe L3,2-edge X-ray adsorption spectra, Mössbauer spectra and CO desorption all suggested an essentially identical nature of Fe sites in both monometallic Fe-NC and bimetallic FeNi-NC; however, Ni blocks the formation of active sites during the pyrolysis and thus causes a sharp reduction in the accessible metal site density, while with only a minor direct participation as a catalytic site in the final catalyst. We also use the site density utilization factor, ϕ SDsurface/bulk , as a measure of the metal site dispersion in PGM-free ORR catalysts. ϕ SDsurface/bulk enables a quantitative evaluation and comparison of distinct catalyst synthesis routes in terms of their ratio of accessible metal sites. It gives guidance for further optimization of the accessible site density of M-NC catalysts.

20.
Angew Chem Int Ed Engl ; 58(31): 10486-10492, 2019 Jul 29.
Article in English | MEDLINE | ID: mdl-31179591

ABSTRACT

Fe-N-C catalysts are very promising materials for fuel cells and metal-air batteries. This work gives fundamental insights into the structural composition of an Fe-N-C catalyst and highlights the importance of an in-depth characterization. By nuclear- and electron-resonance techniques, we are able to show that even after mild pyrolysis and acid leaching, the catalyst contains considerable fractions of α-iron and, surprisingly, iron oxide. Our work makes it questionable to what extent FeN4 sites can be present in Fe-N-C catalysts prepared by pyrolysis at 900 °C and above. The simulation of the iron partial density of phonon states enables the identification of three FeN4 species in our catalyst, one of them comprising a sixfold coordination with end-on bonded oxygen as one of the axial ligands.

SELECTION OF CITATIONS
SEARCH DETAIL
...