Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 170
Filter
1.
Sci Rep ; 14(1): 6376, 2024 03 16.
Article in English | MEDLINE | ID: mdl-38493225

ABSTRACT

The thalamic reticular nucleus (TRN) is a brain region that influences vital neurobehavioral processes, including executive functioning and the generation of sleep rhythms. TRN dysfunction underlies hyperactivity, attention deficits, and sleep disturbances observed across various neurodevelopmental disorders. A specialized sarco-endoplasmic reticulum calcium (Ca2+) ATPase 2 (SERCA2)-dependent Ca2+ signaling network operates in the dendrites of TRN neurons to regulate their bursting activity. Phospholamban (PLN) is a prominent regulator of SERCA2 with an established role in myocardial Ca2+-cycling. Our findings suggest that the role of PLN extends beyond the cardiovascular system to impact brain function. Specifically, we found PLN to be expressed in TRN neurons of the adult mouse brain, and utilized global constitutive and innovative conditional genetic knockout mouse models in concert with electroencephalography (EEG)-based somnography and the 5-choice serial reaction time task (5-CSRTT) to investigate the role of PLN in sleep and executive functioning, two complex behaviors that map onto thalamic reticular circuits. The results of the present study indicate that perturbed PLN function in the TRN results in aberrant TRN-dependent phenotypes in mice (i.e., hyperactivity, impulsivity and sleep deficits) and support a novel role for PLN as a critical regulator of SERCA2 in the TRN neurocircuitry.


Subject(s)
Calcium-Binding Proteins , Neurons , Thalamic Nuclei , Mice , Animals , Thalamic Nuclei/physiology , Sleep/physiology , Electroencephalography , Mice, Knockout
3.
bioRxiv ; 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38045420

ABSTRACT

The thalamic reticular nucleus (TRN) is a critical brain region that greatly influences vital neurobehavioral processes, including executive functioning and the generation of sleep rhythms. Recently, TRN dysfunction was suggested to underlie hyperactivity, attention deficits, and sleep disturbances observed across various devastating neurodevelopmental disorders, including autism, schizophrenia and attention-deficit/hyperactivity disorder (ADHD). Notably, a highly specialized sarco- endoplasmic reticulum calcium (Ca 2+ ) ATPase 2 (SERCA2)-dependent Ca 2+ signaling network operates in the dendrites of TRN neurons to regulate their high-frequency bursting activity. Phospholamban (PLN) is a prominent regulator of the SERCA2 with an established role in maintaining Ca 2+ homeostasis in the heart; although the interaction of PLN with SERCA2 has been largely regarded as cardiac-specific, our findings challenge this view and suggest that the role of PLN extends beyond the cardiovascular system to impact brain function. Specifically, we found PLN to be expressed in the TRN neurons of the adult mouse brain and utilized global constitutive and innovative conditional genetic mouse models, in combination with 5-choice serial reaction time task (5-CSRTT) and electroencephalography (EEG)-based somnography to assess the role of PLN in regulating executive functioning and sleep, two complex behaviors that map onto thalamic reticular circuits. Overall, the results of the present study show that perturbed PLN function in the TRN results in aberrant thalamic reticular behavioral phenotypes in mice (i.e., hyperactivity, impulsivity and sleep deficits) and support a novel role for PLN as a critical regulator of the SERCA2 in the thalamic reticular neurocircuitry.

4.
Front Cardiovasc Med ; 10: 1162205, 2023.
Article in English | MEDLINE | ID: mdl-37144056

ABSTRACT

Arrhythmogenic cardiomyopathy affects significant number of patients worldwide and is characterized by life-threatening ventricular arrhythmias and sudden cardiac death. Mutations in multiple genes with diverse functions have been reported to date including phospholamban (PLN), a key regulator of sarcoplasmic reticulum (SR) Ca2+ homeostasis and cardiac contractility. The PLN-R14del variant in specific is recognized as the cause in an increasing number of patients worldwide, and extensive investigations have enabled rapid advances towards the delineation of PLN-R14del disease pathogenesis and discovery of an effective treatment. We provide a critical overview of current knowledge on PLN-R14del disease pathophysiology, including clinical, animal model, cellular and biochemical studies, as well as diverse therapeutic approaches that are being pursued. The milestones achieved in <20 years, since the discovery of the PLN R14del mutation (2006), serve as a paradigm of international scientific collaboration and patient involvement towards finding a cure.

5.
Int J Mol Sci ; 24(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36768995

ABSTRACT

Phospholamban (PLN) is a major regulator of cardiac contractility, and human mutations in this gene give rise to inherited cardiomyopathies. The deletion of Arginine 14 is the most-prevalent cardiomyopathy-related mutation, and it has been linked to arrhythmogenesis and early death. Studies in PLN-humanized mutant mice indicated an increased propensity to arrhythmias, but the underlying cellular mechanisms associated with R14del-PLN cardiac dysfunction in the absence of any apparent structural remodeling remain unclear. The present study addressed the specific role of myofilaments in the setting of R14del-PLN and the long-term effects of R14del-PLN in the heart. Maximal force was depressed in skinned cardiomyocytes from both left and right ventricles, but this effect was more pronounced in the right ventricle of R14del-PLN mice. In addition, the Ca2+ sensitivity of myofilaments was increased in both ventricles of mutant mice. However, the depressive effects of R14del-PLN on contractile parameters could be reversed with the positive inotropic drug omecamtiv mecarbil, a myosin activator. At 12 months of age, corresponding to the mean symptomatic age of R14del-PLN patients, contractile parameters and Ca2+ transients were significantly depressed in the right ventricular R14del-PLN cardiomyocytes. Echocardiography did not reveal any alterations in cardiac function or remodeling, although histological and electron microscopy analyses indicated subtle alterations in mutant hearts. These findings suggest that both aberrant myocyte calcium cycling and aberrant contractility remain specific to the right ventricle in the long term. In addition, altered myofilament activity is an early characteristic of R14del-PLN mutant hearts and the positive inotropic drug omecamtiv mecarbil may be beneficial in treating R14del-PLN cardiomyopathy.


Subject(s)
Cardiomyopathies , Myofibrils , Humans , Mice , Animals , Myofibrils/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/therapy , Calcium-Binding Proteins/genetics , Arrhythmias, Cardiac/genetics , Calcium/metabolism
6.
Metabolism ; 138: 155344, 2023 01.
Article in English | MEDLINE | ID: mdl-36375644

ABSTRACT

Arrhythmogenic cardiomyopathy (ACM) is characterized by life-threatening ventricular arrhythmias and sudden cardiac death and affects hundreds of thousands of patients worldwide. The deletion of Arginine 14 (p.R14del) in the phospholamban (PLN) gene has been implicated in the pathogenesis of ACM. PLN is a key regulator of sarcoplasmic reticulum (SR) Ca2+ cycling and cardiac contractility. Despite global gene and protein expression studies, the molecular mechanisms of PLN-R14del ACM pathogenesis remain unclear. Using a humanized PLN-R14del mouse model and human induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs), we investigated the transcriptome-wide mRNA splicing changes associated with the R14del mutation. We identified >200 significant alternative splicing (AS) events and distinct AS profiles were observed in the right (RV) and left (LV) ventricles in PLN-R14del compared to WT mouse hearts. Enrichment analysis of the AS events showed that the most affected biological process was associated with "cardiac cell action potential", specifically in the RV. We found that splicing of 2 key genes, Trpm4 and Camk2d, which encode proteins regulating calcium homeostasis in the heart, were altered in PLN-R14del mouse hearts and human iPSC-CMs. Bioinformatical analysis pointed to the tissue-specific splicing factors Srrm4 and Nova1 as likely upstream regulators of the observed splicing changes in the PLN-R14del cardiomyocytes. Our findings suggest that aberrant splicing may affect Ca2+-homeostasis in the heart, contributing to the increased risk of arrythmogenesis in PLN-R14del ACM.


Subject(s)
Action Potentials , Calcium-Binding Proteins , Induced Pluripotent Stem Cells , Myocytes, Cardiac , Animals , Humans , Mice , Calcium/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Myocytes, Cardiac/metabolism , Nerve Tissue Proteins/metabolism , Protein Isoforms/metabolism , Heart
7.
Int J Mol Sci ; 23(13)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35805951

ABSTRACT

Phospholamban (PLN), a key modulator of Ca2+-homeostasis, inhibits sarcoplasmic reticulum (SR) calcium-ATPase (SERCA2a) and regulates cardiac contractility. The human PLN mutation R14del has been identified in arrhythmogenic cardiomyopathy patients worldwide and is currently extensively investigated. In search of the molecular mechanisms mediating the pathological phenotype, we examined PLN-R14del associations to known PLN-interacting partners. We determined that PLN-R14del interactions to key Ca2+-handling proteins SERCA2a and HS-1-associated protein X-1 (HAX-1) were enhanced, indicating the super-inhibition of SERCA2a's Ca2+-affinity. Additionally, histidine-rich calcium binding protein (HRC) binding to SERCA2a was increased, suggesting the inhibition of SERCA2a maximal velocity. As phosphorylation relieves the inhibitory effect of PLN on SERCA2a activity, we examined the impact of phosphorylation on the PLN-R14del/SERCA2a interaction. Contrary to PLN-WT, phosphorylation did not affect PLN-R14del binding to SERCA2a, due to a lack of Ser-16 phosphorylation in PLN-R14del. No changes were observed in the subcellular distribution of PLN-R14del or its co-localization to SERCA2a. However, in silico predictions suggest structural perturbations in PLN-R14del that could impact its binding and function. Our findings reveal for the first time that by increased binding to SERCA2a and HAX-1, PLN-R14del acts as an enhanced inhibitor of SERCA2a, causing a cascade of molecular events contributing to impaired Ca2+-homeostasis and arrhythmogenesis. Relieving SERCA2a super-inhibition could offer a promising therapeutic approach for PLN-R14del patients.


Subject(s)
Arrhythmias, Cardiac , Calcium-Binding Proteins , Calcium , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Calcium/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Humans , Myocardial Contraction , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
8.
Cardiovasc Res ; 118(15): 3140-3150, 2022 12 09.
Article in English | MEDLINE | ID: mdl-35191471

ABSTRACT

AIMS: A mutation in the phospholamban (PLN) gene, leading to deletion of Arg14 (R14del), has been associated with malignant arrhythmias and ventricular dilation. Identifying pre-symptomatic carriers with vulnerable myocardium is crucial because arrhythmia can result in sudden cardiac death, especially in young adults with PLN-R14del mutation. This study aimed at assessing the efficiency and efficacy of in vivo genome editing, using CRISPR/Cas9 and a cardiotropic adeno-associated virus-9 (AAV9), in improving cardiac function in young adult mice expressing the human PLN-R14del. METHODS AND RESULTS: Humanized mice were generated expressing human wild-type (hPLN-WT) or mutant (hPLN-R14del) PLN in the heterozygous state, mimicking human carriers. Cardiac magnetic resonance imaging at 12 weeks of age showed bi-ventricular dilation and increased stroke volume in mutant vs. WT mice, with no deficit in ejection fraction or cardiac output. Challenge of ex vivo hearts with isoproterenol and rapid pacing unmasked higher propensity for sustained ventricular tachycardia (VT) in hPLN-R14del relative to hPLN-WT. Specifically, the VT threshold was significantly reduced (20.3 ± 1.2 Hz in hPLN-R14del vs. 25.7 ± 1.3 Hz in WT, P < 0.01) reflecting higher arrhythmia burden. To inactivate the R14del allele, mice were tail-vein-injected with AAV9.CRISPR/Cas9/gRNA or AAV9 empty capsid (controls). CRISPR-Cas9 efficiency was evaluated by droplet digital polymerase chain reaction and NGS-based amplicon sequencing. In vivo gene editing significantly reduced end-diastolic and stroke volumes in hPLN-R14del CRISPR-treated mice compared to controls. Susceptibility to VT was also reduced, as the VT threshold was significantly increased relative to controls (30.9 ± 2.3 Hz vs. 21.3 ± 1.5 Hz; P < 0.01). CONCLUSIONS: This study is the first to show that disruption of hPLN-R14del allele by AAV9-CRISPR/Cas9 improves cardiac function and reduces VT susceptibility in humanized PLN-R14del mice, offering preclinical evidence for translatable approaches to therapeutically suppress the arrhythmogenic phenotype in human patients with PLN-R14del disease.


Subject(s)
Cardiomyopathies , Gene Editing , Humans , Mice , Animals , Cardiomyopathies/genetics , Cardiomyopathies/therapy
9.
J Pers Med ; 11(6)2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34204946

ABSTRACT

The inherited mutation (R14del) in the calcium regulatory protein phospholamban (PLN) is linked to malignant ventricular arrhythmia with poor prognosis starting at adolescence. However, the underlying early mechanisms that may serve as prognostic factors remain elusive. This study generated humanized mice in which the endogenous gene was replaced with either human wild type or R14del-PLN and addressed the early molecular and cellular pathogenic mechanisms. R14del-PLN mice exhibited stress-induced impairment of atrioventricular conduction, and prolongation of both ventricular activation and repolarization times in association with ventricular tachyarrhythmia, originating from the right ventricle (RV). Most of these distinct electrocardiographic features were remarkably similar to those in R14del-PLN patients. Studies in isolated cardiomyocytes revealed RV-specific calcium defects, including prolonged action potential duration, depressed calcium kinetics and contractile parameters, and elevated diastolic Ca-levels. Ca-sparks were also higher although SR Ca-load was reduced. Accordingly, stress conditions induced after contractions, and inclusion of the CaMKII inhibitor KN93 reversed this proarrhythmic parameter. Compensatory responses included altered expression of key genes associated with Ca-cycling. These data suggest that R14del-PLN cardiomyopathy originates with RV-specific impairment of Ca-cycling and point to the urgent need to improve risk stratification in asymptomatic carriers to prevent fatal arrhythmias and delay cardiomyopathy onset.

10.
Circulation ; 144(6): 441-454, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34024116

ABSTRACT

BACKGROUND: Arginine (Arg) 14 deletion (R14del) in the calcium regulatory protein phospholamban (hPLNR14del) has been identified as a disease-causing mutation in patients with an inherited cardiomyopathy. Mechanisms underlying the early arrhythmogenic phenotype that predisposes carriers of this mutation to sudden death with no apparent structural remodeling remain unclear. METHODS: To address this, we performed high spatiotemporal resolution optical mapping of intact hearts from adult knock-in mice harboring the human PLNWT (wildtype [WT], n=12) or the heterozygous human PLNR14del mutation (R14del, n=12) before and after ex vivo challenge with isoproterenol and rapid pacing. RESULTS: Adverse electrophysiological remodeling was evident in the absence of significant structural or hemodynamic changes. R14del hearts exhibited increased arrhythmia susceptibility compared with wildtype. Underlying this susceptibility was preferential right ventricular action potential prolongation that was unresponsive to ß-adrenergic stimulation. A steep repolarization gradient at the left ventricular/right ventricular interface provided the substrate for interventricular activation delays and ultimately local conduction block during rapid pacing. This was followed by the initiation of macroreentrant circuits supporting the onset of ventricular tachycardia. Once sustained, these circuits evolved into high-frequency rotors, which in their majority were pinned to the right ventricle. These rotors exhibited unique spatiotemporal dynamics that promoted their increased stability in R14del compared with wildtype hearts. CONCLUSIONS: Our findings highlight the crucial role of primary electric remodeling caused by the hPLNR14del mutation. These inherently arrhythmogenic features form the substrate for adrenergic-mediated VT at early stages of PLNR14del induced cardiomyopathy.


Subject(s)
Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/etiology , Calcium-Binding Proteins/genetics , Cardiomyopathies/complications , Cardiomyopathies/genetics , Disease Susceptibility , Sequence Deletion , Action Potentials , Alleles , Amino Acid Substitution , Animals , Disease Models, Animal , Electrocardiography , Genetic Loci , Genetic Predisposition to Disease , Heart Function Tests , Humans , Mice , Mice, Transgenic
12.
Int J Mol Sci ; 21(24)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339131

ABSTRACT

The cytoskeleton has a primary role in cardiomyocyte function, including the response to mechanical stimuli and injury. The small heat shock protein 20 (Hsp20) conveys protective effects in cardiac muscle that are linked to serine-16 (Ser16) Hsp20 phosphorylation by stress-induced PKA, but the link between Hsp20 and the cytoskeleton remains poorly understood. Herein, we demonstrate a physical and functional interaction of Hsp20 with the cytoskeletal protein 14-3-3. We show that, upon phosphorylation at Ser16, Hsp20 translocates from the cytosol to the cytoskeleton where it binds to 14-3-3. This leads to dissociation of 14-3-3 from the F-actin depolymerization regulator cofilin-2 (CFL2) and enhanced F-actin depolymerization. Importantly, we demonstrate that the P20L Hsp20 mutation associated with dilated cardiomyopathy exhibits reduced physical interaction with 14-3-3 due to diminished Ser16 phosphorylation, with subsequent failure to translocate to the cytoskeleton and inability to disassemble the 14-3-3/CFL2 complex. The topological sequestration of Hsp20 P20L ultimately results in impaired regulation of F-actin dynamics, an effect implicated in loss of cytoskeletal integrity and amelioration of the cardioprotective functions of Hsp20. These findings underscore the significance of Hsp20 phosphorylation in the regulation of actin cytoskeleton dynamics, with important implications in cardiac muscle physiology and pathophysiology.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Cytoskeleton/metabolism , HSP20 Heat-Shock Proteins/metabolism , Myocardium/metabolism , 14-3-3 Proteins/metabolism , Actins/metabolism , Animals , Cofilin 2/metabolism , HEK293 Cells , HSP20 Heat-Shock Proteins/genetics , Humans , Mice , Mutation , Phosphorylation , Protein Binding , Protein Processing, Post-Translational
13.
J Gen Physiol ; 152(11)2020 11 02.
Article in English | MEDLINE | ID: mdl-32986800

ABSTRACT

Each heartbeat is followed by a refractory period. Recovery from refractoriness is known as Ca2+ release restitution (CRR), and its alterations are potential triggers of Ca2+ arrhythmias. Although the control of CRR has been associated with SR Ca2+ load and RYR2 Ca2+ sensitivity, the relative role of some of the determinants of CRR remains largely undefined. An intriguing point, difficult to dissect and previously neglected, is the possible independent effect of SR Ca2+ content versus the velocity of SR Ca2+ refilling on CRR. To assess these interrogations, we used isolated myocytes with phospholamban (PLN) ablation (PLNKO), knock-in mice with pseudoconstitutive CaMKII phosphorylation of RYR2 S2814 (S2814D), S2814D crossed with PLNKO mice (SDKO), and a previously validated human cardiac myocyte model. Restitution of cytosolic Ca2+ (Fura-2 AM) and L-type calcium current (ICaL; patch-clamp) was evaluated with a two-pulse (S1/S2) protocol. CRR and ICaL restitution increased as a function of the (S2-S1) coupling interval, following an exponential curve. When SR Ca2+ load was increased by increasing extracellular [Ca2+] from 2.0 to 4.0 mM, CRR and ICaL restitution were enhanced, suggesting that ICaL restitution may contribute to the faster CRR observed at 4.0 mM [Ca2+]. In contrast, ICaL restitution did not differ among the different mouse models. For a given SR Ca2+ load, CRR was accelerated in S2814D myocytes versus WT, but not in PLNKO and SDKO myocytes versus WT and S2814D, respectively. The model mimics all experimental data. Moreover, when the PLN ablation-induced decrease in RYR2 expression was corrected, the model revealed that CRR was accelerated in PLNKO and SDKO versus WT and S2814D myocytes, consistent with the enhanced velocity of refilling, SR [Ca2+] recovery, and CRR. We speculate that refilling rate might enhance CRR independently of SR Ca2+ load.


Subject(s)
Calcium , Sarcoplasmic Reticulum , Animals , Calcium/metabolism , Calcium-Binding Proteins , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cells, Cultured , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Theoretical , Myocytes, Cardiac/metabolism , Ryanodine Receptor Calcium Release Channel , Sarcoplasmic Reticulum/metabolism
14.
Biophys Rev ; 12(4): 1065-1084, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32656747

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease characterized by ventricular enlargement, diastolic dysfunction, and increased risk for sudden cardiac death. Sarcomeric genetic defects are the predominant known cause of HCM. In particular, mutations in the myosin-binding protein C gene (MYBPC3) are associated with ~ 40% of all HCM cases in which a genetic basis has been established. A decade ago, our group reported a 25-base pair deletion in intron 32 of MYBPC3 (MYBPC3Δ25bp) that is uniquely prevalent in South Asians and is associated with autosomal dominant cardiomyopathy. Although our studies suggest that this deletion results in left ventricular dysfunction, cardiomyopathies, and heart failure, the precise mechanism by which this variant predisposes to heart disease remains unclear. Increasingly appreciated, however, is the contribution of secondary risk factors, additional mutations, and lifestyle choices in augmenting or modifying the HCM phenotype in MYBPC3Δ25bp carriers. Therefore, the goal of this review article is to summarize the current research dedicated to understanding the molecular pathophysiology of HCM in South Asians with the MYBPC3Δ25bp variant. An emphasis is to review the latest techniques currently applied to explore the MYBPC3Δ25bp pathogenesis and to provide a foundation for developing new diagnostic strategies and advances in therapeutics.

15.
J Biol Chem ; 295(32): 11275-11291, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32554466

ABSTRACT

Cardiac myosin-binding protein-C (cMyBP-C) is highly phosphorylated under basal conditions. However, its phosphorylation level is decreased in individuals with heart failure. The necessity of cMyBP-C phosphorylation for proper contractile function is well-established, but the physiological and pathological consequences of decreased cMyBP-C phosphorylation in the heart are not clear. Herein, using intact adult cardiomyocytes from mouse models expressing phospho-ablated (AAA) and phosphomimetic (DDD) cMyBP-C as well as controls, we found that cMyBP-C dephosphorylation is sufficient to reduce contractile parameters and calcium kinetics associated with prolonged decay time of the calcium transient and increased diastolic calcium levels. Isoproterenol stimulation reversed the depressive contractile and Ca2+-kinetic parameters. Moreover, caffeine-induced calcium release yielded no difference between AAA/DDD and controls in calcium content of the sarcoplasmic reticulum. On the other hand, sodium-calcium exchanger function and phosphorylation levels of calcium-handling proteins were significantly decreased in AAA hearts compared with controls. Stress conditions caused increases in both spontaneous aftercontractions in AAA cardiomyocytes and the incidence of arrhythmias in vivo compared with the controls. Treatment with omecamtiv mecarbil, a positive cardiac inotropic drug, rescued the contractile deficit in AAA cardiomyocytes, but not the calcium-handling abnormalities. These findings indicate a cascade effect whereby cMyBP-C dephosphorylation causes contractile defects, which then lead to calcium-cycling abnormalities, resulting in aftercontractions and increased incidence of cardiac arrhythmias under stress conditions. We conclude that improvement of contractile deficits alone without improving calcium handling may be insufficient for effective management of heart failure.


Subject(s)
Calcium/metabolism , Carrier Proteins/metabolism , Homeostasis , Myocardium/metabolism , Animals , Mice , Phosphorylation , Sarcomeres/metabolism
16.
PLoS One ; 15(3): e0230386, 2020.
Article in English | MEDLINE | ID: mdl-32218573

ABSTRACT

Probenecid has been used for decades in the treatment of gout but recently has also been found to improve outcomes in patients with heart failure via stimulation of the transient receptor potential vanilloid 2 (TRPV2) channel in cardiomyocytes. This study tested the use of probenecid on a novel mouse model of peripartum cardiomyopathy (PPCM) as a potential treatment option. A human mutation of the human heat shock protein 20 (Hsp20-S10F) in mice has been recently shown to result in cardiomyopathy, when exposed to pregnancies. Treatment with either probenecid or control sucrose water was initiated after the first pregnancy in both wild type and Hsp20-S10F mice. Serial echocardiography was performed during subsequent pregnancies and hearts were collected after the third pregnancies for staining and molecular analysis. Hsp20-S10F mice treated with probenecid had decreased mortality, hypertrophy, TRPV2 expression and molecular parameters of heart failure. Probenecid treatment also decreased apoptosis as evidenced by an increase in the level of Bcl-2/Bax. Probenecid improved survival in a novel mouse model of PPCM and may be an appropriate therapy for humans with PPCM as it has a proven safety and tolerability in patients with heart failure.


Subject(s)
Calcium Channels/genetics , Cardiomyopathies/drug therapy , HSP20 Heat-Shock Proteins/genetics , Heart Failure/drug therapy , Probenecid/pharmacology , TRPV Cation Channels/genetics , Animals , Apoptosis/drug effects , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Disease Models, Animal , Echocardiography , Female , Gene Expression Regulation/drug effects , Heart Failure/diagnostic imaging , Heart Failure/genetics , Heart Failure/pathology , Humans , Mice , Mutation/genetics , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Peripartum Period/drug effects , Pregnancy , Pregnancy Complications, Cardiovascular/drug therapy , Pregnancy Complications, Cardiovascular/genetics
17.
Front Physiol ; 11: 107, 2020.
Article in English | MEDLINE | ID: mdl-32210830

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is a genetic disorder caused by mutations in different genes mainly encoding myofilament proteins and therefore called a "disease of the sarcomere." Despite the discovery of sarcomere protein mutations linked to HCM almost 30 years ago, the cellular mechanisms responsible for the development of this disease are not completely understood and likely vary among different mutations. Moreover, despite many efforts to develop effective treatments for HCM, these have largely been unsuccessful, and more studies are needed to better understand the cellular mechanisms of the disease. In experiments reported here, we investigated a mouse model expressing the mutant cTnT-R92Q, which is linked to HCM and induces an increase in myofilament Ca2+ sensitivity and diastolic dysfunction. We found that early correction of the diastolic dysfunction by phospholamban knockout (PLNKO) was able to prevent the development of the HCM phenotype in troponin T (TnT)-R92Q transgenic (TG) mice. Four groups of mice in FVB/N background were generated and used for the experiments: (1) non-transgenic (NTG)/PLN mice, which express wild-type TnT and normal level of PLN; (2) NTG/PLNKO mice, which express wild-type TnT and no PLN; (3) TG/PLN mice, which express TnT-R92Q and normal level of PLN; (4) TG/PLNKO mice, which express TnT-R92Q and no PLN. Cardiac function was determined using both standard echocardiographic parameters and speckle tracking strain measurements. We found that both atrial morphology and diastolic function were altered in TG/PLN mice but normal in TG/PLNKO mice. Histological analysis showed a disarray of myocytes and increased collagen deposition only in TG/PLN hearts. We also observed increased Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylation only in TG/PLN hearts but not in TG/PLNKO hearts. The rescue of the HCM phenotype was not associated with differences in myofilament Ca2+ sensitivity between TG/PLN and TG/PLNKO mice. Moreover, compared to standard systolic echo parameters, such as ejection fraction (EF), speckle strain measurements provided a more sensitive approach to detect early systolic dysfunction in TG/PLN mice. In summary, our results indicate that targeting diastolic dysfunction through altering Ca2+ fluxes with no change in myofilament response to Ca2+ was able to prevent the development of the HCM phenotype and should be considered as a potential additional treatment for HCM patients.

19.
J Biol Chem ; 295(14): 4631-4646, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32079675

ABSTRACT

Increasing hepatic mitochondrial activity through pyruvate dehydrogenase and elevating enterohepatic bile acid recirculation are promising new approaches for metabolic disease therapy, but neither approach alone can completely ameliorate disease phenotype in high-fat diet-fed mice. This study showed that diet-induced hepatosteatosis, hyperlipidemia, and insulin resistance can be completely prevented in mice with liver-specific HCLS1-associated protein X-1 (HAX-1) inactivation. Mechanistically, we showed that HAX-1 interacts with inositol 1,4,5-trisphosphate receptor-1 (InsP3R1) in the liver, and its absence reduces InsP3R1 levels, thereby improving endoplasmic reticulum-mitochondria calcium homeostasis to prevent excess calcium overload and mitochondrial dysfunction. As a result, HAX-1 ablation activates pyruvate dehydrogenase and increases mitochondria utilization of glucose and fatty acids to prevent hepatosteatosis, hyperlipidemia, and insulin resistance. In contrast to the reduction of InsP3R1 levels, hepatic HAX-1 deficiency increases bile salt exporter protein levels, thereby promoting enterohepatic bile acid recirculation, leading to activation of bile acid-responsive genes in the intestinal ileum to augment insulin sensitivity and of cholesterol transport genes in the liver to suppress hyperlipidemia. The dual mechanisms of increased mitochondrial respiration and enterohepatic bile acid recirculation due to improvement of endoplasmic reticulum-mitochondria calcium homeostasis with hepatic HAX-1 inactivation suggest that this may be a potential therapeutic target for metabolic disease intervention.


Subject(s)
Bile Acids and Salts/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mitochondria/metabolism , Animals , Blood Glucose/analysis , Calcium/metabolism , Diet, Western , Endoplasmic Reticulum/metabolism , Glucose Tolerance Test , Hyperlipidemias/metabolism , Hyperlipidemias/pathology , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Insulin/metabolism , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/genetics , Ketone Oxidoreductases/metabolism , Lipid Peroxidation , Lipogenesis , Liver/metabolism , Liver/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Triglycerides/blood
20.
J Biol Chem ; 294(48): 18057-18068, 2019 11 29.
Article in English | MEDLINE | ID: mdl-31619520

ABSTRACT

Cardiac mitochondrial damage and subsequent inflammation are hallmarks of endotoxin-induced myocardial depression. Activation of the Parkin/PTEN-induced kinase 1 (PINK1) pathway has been shown to promote autophagy of damaged mitochondria (mitophagy) and to protect from endotoxin-induced cardiac dysfunction. Tumor susceptibility gene 101 (TSG101) is a key member of the endosomal recycling complexes required for transport, which may affect autophagic flux. In this study, we investigated whether TSG101 regulates mitophagy and influences the outcomes of endotoxin-induced myocardial dysfunction. TSG101 transgenic and knockdown mice underwent endotoxin/lipopolysaccharide treatment (10 µg/g) and were assessed for survival, cardiac function, systemic/local inflammation, and activity of mitophagy mediators in the heart. Upon endotoxin challenge and compared with WT mice, TSG101 transgenic mice exhibited increased survival, preserved cardiac contractile function, reduced inflammation, and enhanced mitophagy activation in the heart. By contrast, TSG101 knockdown mice displayed opposite phenotypes during endotoxemia. Mechanistically, both coimmunoprecipitation assays and coimmunofluorescence staining revealed that TSG101 directly binds to Parkin in the cytosol of myocytes and facilitates translocation of Parkin from the cytosol to the mitochondria. Our results indicate that TSG101 elevation could protect against endotoxin-triggered myocardial injury by promoting Parkin-induced mitophagy.


Subject(s)
DNA-Binding Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Heart Diseases/metabolism , Lipopolysaccharides/toxicity , Mitochondria, Heart/metabolism , Mitophagy/drug effects , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , DNA-Binding Proteins/genetics , Endosomal Sorting Complexes Required for Transport/genetics , Heart Diseases/chemically induced , Heart Diseases/genetics , Heart Diseases/pathology , Male , Mice , Mice, Knockout , Mitochondria, Heart/genetics , Mitochondria, Heart/pathology , Mitophagy/genetics , Myocardial Contraction/drug effects , Myocardial Contraction/genetics , Protein Kinases/genetics , Protein Kinases/metabolism , Transcription Factors/genetics , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...