Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Res ; 15(6): 753-764, 2017 06.
Article in English | MEDLINE | ID: mdl-28184013

ABSTRACT

Tyro3, Axl, and Mertk (collectively TAM receptors) are three homologous receptor tyrosine kinases that bind vitamin K-dependent endogenous ligands, Protein S (ProS), and growth arrest-specific factor 6 (Gas6), and act as bridging molecules to promote phosphatidylserine (PS)-mediated clearance of apoptotic cells (efferocytosis). TAM receptors are overexpressed in a vast array of tumor types, whereby the level of expression correlates with the tumor grade and the emergence of chemo- and radioresistance to targeted therapeutics, but also have been implicated as inhibitory receptors on infiltrating myeloid-derived cells in the tumor microenvironment that can suppress host antitumor immunity. In the present study, we utilized TAM-IFNγR1 reporter lines and expressed TAM receptors in a variety of epithelial cell model systems to show that each TAM receptor has a unique pattern of activation by Gas6 or ProS, as well as unique dependency for PS on apoptotic cells and PS liposomes for activity. In addition, we leveraged this system to engineer epithelial cells that express wild-type TAM receptors and show that although each receptor can promote PS-mediated efferocytosis, AKT-mediated chemoresistance, as well as upregulate the immune checkpoint molecule PD-L1 on tumor cells, Mertk is most dominant in the aforementioned pathways. Functionally, TAM receptor-mediated efferocytosis could be partially blocked by PS-targeting antibody 11.31 and Annexin V, demonstrating the existence of a PS/PS receptor (i.e., TAM receptor)/PD-L1 axis that operates in epithelial cells to foster immune escape. These data provide a rationale that PS-targeting, anti-TAM receptor, and anti-PD-L1-based therapeutics will have merit as combinatorial checkpoint inhibitors.Implications: Many tumor cells are known to upregulate the immune checkpoint inhibitor PD-L1. This study demonstrates a role for PS and TAM receptors in the regulation of PD-L1 on cancer cells. Mol Cancer Res; 15(6); 753-64. ©2017 AACR.


Subject(s)
B7-H1 Antigen/metabolism , Drug Resistance, Neoplasm/physiology , Phosphatidylserines/metabolism , Proto-Oncogene Proteins c-akt/metabolism , c-Mer Tyrosine Kinase/metabolism , B7-H1 Antigen/genetics , Cell Line, Tumor , Epithelial Cells/metabolism , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Liposomes , Protein Domains , Protein S/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, Interferon/genetics , Receptors, Interferon/metabolism , c-Mer Tyrosine Kinase/genetics , Axl Receptor Tyrosine Kinase , Interferon gamma Receptor
2.
Comput Struct Biotechnol J ; 9: e201403001, 2014.
Article in English | MEDLINE | ID: mdl-24757504

ABSTRACT

The first example of a kinetic labeling library designed to enable the discovery of affinity labels is presented. Each library component (1) consists of a variable peptidyl component linked to a biotinyl moiety by a 4-mercaptobenzoyl linker in thioester format. We demonstrate that an affinity label can be uncovered by measuring reaction rates between library pools and the protein target, human serum albumin (HSA) and identifying significant outliers. By choosing peptide functionality compatible with a potentially reactive thioester labeling entity, libraries can be screened in pools. It is noteworthy that a limited subset of amino acids (R, S, E, F, Y, l, M, W, and Q) that compose the affinity moiety is sufficient to produce rate variances that guide the discovery process. After two rounds of deconvolution, J-FLYEE-NH2 (7-E) emerges as a bona fide affinity label of HSA. Unlike known affinity labels, the affinity moiety is not retained in the protein product, but is extruded upon acylation of the protein. This feature affords a method of introducing various payloads, without extraneous elements, onto protein frameworks.

3.
Org Biomol Chem ; 10(23): 4500-4, 2012 Jun 21.
Article in English | MEDLINE | ID: mdl-22573340

ABSTRACT

Annexin V (1) specifically binds to phosphatidylserine on apoptotic and necrotic cells as well as certain cancer cells, making it an attractive vehicle for the delivery of therapeutically-relevant conjugates to such sites. The wild-type protein possesses a single thiol at Cys316, which is difficultly accessible to site-specific labeling by simple maleimides. By contrast, 1,4-benzoquinone site-specifically labels annexin V in minutes. The resulting conjugate (5) serves as an intermediate for crosslinking annexin molecules, which can be accomplished within hours either directly for linking annexin V-128 (19), or via an extended sequence involving the crosslinking of two units of (5) by the symmetrical α,ω-dithiol (20). Besides its ability to mediate protein dimer formation while retaining annexin V's ability to bind phosphatidylserine, (5) possesses classic 1,4-benzoquinone reactivity. Various nucleophiles and Diels-Alder dienes form adducts with (5) in reactions that may have general utility for the synthesis of novel biologically active entities. The present work presents the first example of thiol-specific crosslinking of proteins by 1,4-quinone-based methodology designed to exploit the reactivity of this versatile chemical entity.


Subject(s)
Annexin A5/chemistry , Benzoquinones/chemistry , Cross-Linking Reagents/chemistry , Protein Multimerization , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...