Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell ; 11(10): 1827-40, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10521515

ABSTRACT

More than 92 genes encoding MYB transcription factors of the R2R3 class have been described in Arabidopsis. The functions of a few members of this large gene family have been described, indicating important roles for R2R3 MYB transcription factors in the regulation of secondary metabolism, cell shape, and disease resistance, and in responses to growth regulators and stresses. For the majority of the genes in this family, however, little functional information is available. As the first step to characterizing these genes functionally, the sequences of >90 family members, and the map positions and expression profiles of >60 members, have been determined previously. An important second step in the functional analysis of the MYB family, through a process of reverse genetics that entails the isolation of insertion mutants, is described here. For this purpose, a variety of gene disruption resources has been used, including T-DNA-insertion populations and three distinct populations that harbor transposon insertions. We report the isolation of 47 insertions into 36 distinct MYB genes by screening a total of 73 genes. These defined insertion lines will provide the foundation for subsequent detailed functional analyses for the assignment of specific functions to individual members of the R2R3 MYB gene family.


Subject(s)
Arabidopsis/genetics , Genes, myb , Mutagenesis, Insertional , Transcription Factors/genetics , Base Sequence , DNA Primers , DNA Transposable Elements , DNA, Bacterial , Homozygote , Phylogeny , Polymerase Chain Reaction
2.
Plant J ; 16(2): 263-76, 1998 Oct.
Article in English | MEDLINE | ID: mdl-9839469

ABSTRACT

Transcription factors containing a conserved DNA-binding domain similar to that of the proto-oncogene c-myb have been identified in nearly all eukaryotes. MYB-related proteins from plants generally contain two related helix-turn-helix motifs, the R2 and R3 repeats. It was estimated that Arabidopsis thaliana contains more than 100 R2R3-MYB genes. The few cases where functional data are available suggest an important role of these genes in the regulation of secondary metabolism, the control of cell shape, disease resistance, and hormone responses. To determine the full regulatory potential of this large family of regulatory genes, a systematic search for the function of all genes of this family was initiated. Sequence data for more than 90 different A. thaliana R2R3-MYB genes have been obtained. Sequence comparison revealed conserved amino acid motifs shared by subgroups of R2R3-MYB genes in addition to the characteristic DNA-binding domain. No significant clustering of the genes was detected, although they are not uniformly distributed throughout the A. thaliana genome.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , DNA-Binding Proteins/genetics , Genome, Plant , Helix-Turn-Helix Motifs/genetics , Plant Proteins/genetics , Proto-Oncogene Proteins c-myb , Transcription Factors/genetics , Amino Acid Sequence , Chromosome Mapping , Chromosomes , Molecular Sequence Data , Polymerase Chain Reaction
3.
Protist ; 149(4): 367-80, 1998 Dec.
Article in English | MEDLINE | ID: mdl-23194719

ABSTRACT

The prasinophytes comprise a morphologically heterogeneous assembly of mostly marine flagellates and coccoid taxa, which represent an important component of the nano- and picoplankton, and have previously figured prominently in discussions about the origin and phylogeny of the green plants. To evaluate their putative basal position in the Viridiplantae and to resolve the phylogenetic relationships among the prasinophyte taxa, we determined complete nuclear-encoded SSU rRNA sequences from 13 prasinophyte taxa representing the genera Cymbomonas, Halosphaera, Mamiella, Mantoniella, Micromonas, Pterosperma, Pycnococcus, and Pyramimonas. Phylogenetic analyses of SSU rRNA sequences using distance, parsimony and likelihood methods revealed four independent prasi.nophyte lineages (clades) which constitute the earliest divergences among the Chlorophyta. In order of their divergence these clades are represented by the genera Cymbomonas, Halosphaera, Pterosperma, Pyramimonas (clade I), Mamiella, Mantoniella, Micromonas (clade II), Pseudoscourfieldia (strain CCMP 717), Nephroselmis (clade III), and Tetraselmis, Scherffelia (clade IV). The coccoid Pycnococcus provasolii diverged after clade II, but before clade III. Since no other coccoid prasinophyte taxa were analyzed in this study, the phylogenetic status of this taxon is presently unresolved. Our analyses provide further evidence for the basal phylogenetic position of the scaly green flagellates among the Chlorophyta and raise important questions concerning the class-level classification of the Chlorophyta.

4.
J Mol Evol ; 41(1): 74-84, 1995 Jul.
Article in English | MEDLINE | ID: mdl-7608991

ABSTRACT

Complete nuclear-encoded small-subunit 18S rRNA (= SSU rRNA) gene sequences were determined for the prasinophyte green alga Mantoniella squamata; the charophycean green algae Chara foetida, Coleochaete scutata, Klebsormidium flaccidum, and Mougeotia scalaris; the bryophytes Marchantia polymorpha, Fossombronia pusilla, and Funaria hygrometrica; and the lycopod Selaginella galleottii to get a better insight into the sequential evolution from green algae to land plants. The sequences were aligned with several previously published SSU rRNA sequences from chlorophytic and charophytic algae as well as from land plants to infer the evolutionary relationships for major evolutionary lineages within the Chlorobionta by distance matrix, maximum parsimony, and maximum likelihood analyses. Phylogenetic trees created by the different methods consistently placed the Charophyceae on the branch leading to the land plants. The Charophyceae were shown to be polyphyletic with the Charales ("charalean" algae) diverging earlier than the Coleochaetales, Klebsormidiales, Chlorokybales, and Zygnematales ("charophycean" algae) which branch from a point closer to the land plants in most analyses. Maximum parsimony and maximum likelihood analyses imply a successive evolution from "charophycean" algae, particularly Coleochaetales, to bryophytes, lycopods, and seed plants. In contrast, distance matrix methods group the bryophytes together with the "charophycean" algae, suggesting a separate evolution of these organisms compared with the club moss and the seed plants.


Subject(s)
Biological Evolution , DNA, Ribosomal/genetics , Genes, Plant , Plants/classification , Plants/genetics , RNA, Ribosomal, 18S/genetics , Chlorophyta/classification , Chlorophyta/genetics , DNA, Ribosomal/chemistry , Molecular Sequence Data , Phylogeny , Probability , RNA, Ribosomal, 18S/chemistry , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...