Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Cell Sci ; 137(1)2024 01 01.
Article in English | MEDLINE | ID: mdl-38197775

ABSTRACT

The septation initiation network (SIN) is a conserved signal transduction network, which is important for cytokinesis in Schizosaccharomyces pombe. The SIN component Etd1p is required for association of some SIN proteins with the spindle pole body (SPB) during anaphase and for contractile ring formation. We show that tethering of Cdc7p or Sid1p to the SIN scaffold Cdc11p at the SPB, rescues etd1-Δ. Analysis of a suppressor of the mutant etd1-M9 revealed that SIN signalling is influenced by the carbon source of the cell. Growth on a non-fermentable carbon source glycerol reduces the requirement for SIN signalling but does not bypass it. The decreased need for SIN signalling is mediated largely by reduction of protein kinase A activity, and it is phenocopied by deletion of pka1 on glucose medium. We conclude that protein kinase A is an important regulator of the SIN, and that SIN signalling is regulated by the carbon source of the cell.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , Schizosaccharomyces , Cyclic AMP-Dependent Protein Kinases/genetics , Schizosaccharomyces/genetics , Actin Cytoskeleton , Carbon , Signal Transduction
2.
Cell Rep ; 26(4): 1044-1058.e5, 2019 01 22.
Article in English | MEDLINE | ID: mdl-30673600

ABSTRACT

Meiotic progression in S. pombe is regulated by stage-specific gene expression and translation, changes in RNA stability, expression of anti-sense transcripts, and targeted proteolysis of regulatory proteins. We have used SILAC labeling to examine the relative levels of proteins in diploid S. pombe cells during meiosis. Among the 3,268 proteins quantified at all time points, the levels of 880 proteins changed at least 2-fold; the majority of proteins showed stepwise increases or decreases during the meiotic divisions, while some changed transiently. Overall, we observed reductions in proteins involved in anabolism and increases in proteins involved in catabolism. We also observed increases in the levels of proteins of the ESCRT-III complex and revealed a role for ESCRT-III components in chromosome segregation and spore formation. Correlation with studies of meiotic gene expression and ribosome occupancy reveals that many of the changes in steady-state protein levels are post-transcriptional.


Subject(s)
Chromosome Segregation/physiology , Chromosomes, Fungal/metabolism , Gene Expression Regulation, Fungal/physiology , Meiosis/physiology , Proteome/biosynthesis , Schizosaccharomyces pombe Proteins/biosynthesis , Schizosaccharomyces/metabolism , Chromosomes, Fungal/genetics , Proteome/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/genetics
3.
PLoS One ; 10(8): e0134214, 2015.
Article in English | MEDLINE | ID: mdl-26244885

ABSTRACT

Cytokinesis in fission yeast is controlled by the Septation Initiation Network (SIN), a protein kinase signaling network using the spindle pole body as scaffold. In order to describe the qualitative behavior of the system and predict unknown mutant behaviors we decided to adopt a Boolean modeling approach. In this paper, we report the construction of an extended, Boolean model of the SIN, comprising most SIN components and regulators as individual, experimentally testable nodes. The model uses CDK activity levels as control nodes for the simulation of SIN related events in different stages of the cell cycle. The model was optimized using single knock-out experiments of known phenotypic effect as a training set, and was able to correctly predict a double knock-out test set. Moreover, the model has made in silico predictions that have been validated in vivo, providing new insights into the regulation and hierarchical organization of the SIN.


Subject(s)
Cytokinesis/genetics , Gene Expression Regulation, Fungal , Gene Regulatory Networks/genetics , Models, Genetic , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces/genetics , Mutation , Reproducibility of Results , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Signal Transduction/genetics
4.
J Cell Sci ; 128(4): 741-54, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25501816

ABSTRACT

The Schizosaccharomyces pombe septation initiation network (SIN) regulates cytokinesis, and asymmetric association of SIN proteins with the mitotic spindle pole bodies (SPBs) is important for its regulation. Here, we have used semi-automated image analysis to study SIN proteins in large numbers of wild-type and mutant cells. Our principal conclusions are: first, that the association of Cdc7p with the SPBs in early mitosis is frequently asymmetric, with a bias in favour of the new SPB; second, that the early association of Cdc7p-GFP to the SPB depends on Plo1p but not Spg1p, and is unaffected by mutations that influence its asymmetry in anaphase; third, that Cdc7p asymmetry in anaphase B is delayed by Pom1p and by activation of the spindle assembly checkpoint, and is promoted by Rad24p; and fourth, that the length of the spindle, expressed as a fraction of the length of the cell, at which Cdc7p becomes asymmetric is similar in cells dividing at different sizes. These data reveal that multiple regulatory mechanisms control the SIN in mitosis and lead us to propose a two-state model to describe the SIN.


Subject(s)
GTP Phosphohydrolases/genetics , M Phase Cell Cycle Checkpoints/genetics , Protein Serine-Threonine Kinases/genetics , Schizosaccharomyces pombe Proteins/genetics , Spindle Apparatus/genetics , Spindle Pole Bodies/genetics , Cell Cycle Proteins/genetics , Cytokinesis/genetics , Green Fluorescent Proteins/genetics , Image Processing, Computer-Assisted , Intracellular Signaling Peptides and Proteins/genetics , Mitosis/genetics , Protein Kinases/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces/growth & development , Spindle Apparatus/physiology
5.
PLoS One ; 9(5): e97683, 2014.
Article in English | MEDLINE | ID: mdl-24848109

ABSTRACT

Targeted alteration of the genome lies at the heart of the exploitation of S. pombe as a model system. The rate of analysis is often determined by the efficiency with which a target locus can be manipulated. For most loci this is not a problem, however for some loci, such as fin1+, rates of gene targeting below 5% can limit the scope and scale of manipulations that are feasible within a reasonable time frame. We now describe a simple modification of transformation procedure for directing integration of genomic sequences that leads to a 5-fold increase in the transformation efficiency when antibiotic based dominant selection markers are used. We also show that removal of the pku70+ and pku80+ genes, which encode DNA end binding proteins required for the non-homologous end joining DNA repair pathway, increases the efficiency of gene targeting at fin1+ to around 75-80% (a 16-fold increase). We describe how a natMX6/rpl42+ cassette can be used for positive and negative selection for integration at a targeted locus. To facilitate the evaluation of the impact of a series of mutations on the function of a gene of interest we have generated three vector series that rely upon different selectable markers to direct the expression of tagged/untagged molecules from distinct genomic integration sites. pINTL and pINTK vectors use ura4+ selection to direct disruptive integration of leu1+ and lys1+ respectively, while pINTH vectors exploit nourseothricin resistance to detect the targeted disruption of a hygromycin B resistance conferring hphMX6 cassette that has been integrated on chromosome III. Finally, we have generated a series of multi-copy expression vectors that use resistance to nourseothricin or kanamycin/G418 to select for propagation in prototrophic hosts. Collectively these protocol modifications and vectors extend the versatility of this key model system.


Subject(s)
Genetic Engineering/methods , Schizosaccharomyces/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Genetic Vectors/genetics , Genome, Bacterial/genetics , Schizosaccharomyces/drug effects , Sequence Homology, Nucleic Acid , Streptothricins/pharmacology , Transformation, Genetic
6.
J Cell Sci ; 127(Pt 14): 3149-61, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24838944

ABSTRACT

The Schizosaccharomyces pombe septation initiation network (SIN) is required for cytokinesis during vegetative growth and for spore formation during meiosis. Regulation of the SIN during mitosis has been studied extensively, but less is known about its meiotic regulation. Here, we show that several aspects of SIN regulation differ between mitosis and meiosis. First, the presence of GTP-bound Spg1p is not the main determinant of the timing of Cdc7p and Sid1p association with the spindle pole body (SPB) during meiosis. Second, the localisation dependencies of SIN proteins differ from those in mitotic cells, suggesting a modified functional organisation of the SIN during meiosis. Third, there is stage-specific degradation of SIN components in meiosis; Byr4p is degraded after meiosis I, whereas the degradation of Cdc7p, Cdc11p and Sid4p occurs after the second meiotic division and depends upon the ubiquitin ligase Dma1p. Finally, Dma1p-dependent degradation is not restricted to the SIN, as we show that Dma1p is needed for the degradation of Mcp6p (also known as Hrs1p) during meiosis I. Taken together, these data suggest that stage-specific targeted proteolysis plays an important role in regulating meiotic progression.


Subject(s)
Cell Cycle Proteins/metabolism , Meiosis/physiology , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/cytology , Cell Cycle Proteins/genetics , Repressor Proteins/metabolism , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Signal Transduction
7.
Nat Cell Biol ; 15(1): 88-95, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23222840

ABSTRACT

Activation of mitosis-promoting factor (MPF) drives mitotic commitment. In human cells active MPF appears first on centrosomes. We show that local activation of MPF on the equivalent organelle of fission yeast, the spindle pole body (SPB), promotes Polo kinase activity at the SPBs long before global MPF activation drives mitotic commitment. Artificially promoting MPF or Polo activity at various locations revealed that this local control of Plo1 activity on G2 phase SPBs dictates the timing of mitotic commitment. Cytokinesis of the rod-shaped fission yeast cell generates a naive, new, cell end. Growth is restricted to the experienced old end until a point in G2 phase called new end take off (NETO) when bipolar growth is triggered. NETO coincided with MPF activation of Plo1 on G2 phase SPBs (ref. 4). Both MPF and Polo activities were required for NETO and both induced NETO when ectopically activated at interphase SPBs. NETO promotion by MPF required polo. Thus, local MPF activation on G2 SPBs directs polo kinase to control at least two distinct and temporally separated, cell-cycle transitions at remote locations.


Subject(s)
Maturation-Promoting Factor/metabolism , Mitosis , Morphogenesis , Schizosaccharomyces/physiology , Centrosome , Enzyme Activation , Enzyme Stability , Feedback, Physiological , G2 Phase , Green Fluorescent Proteins/metabolism , Half-Life , Microtubule-Associated Proteins/metabolism , Models, Biological , Phosphoproteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Transport , Recombinant Fusion Proteins/metabolism , Schizosaccharomyces/growth & development , Schizosaccharomyces/ultrastructure , Schizosaccharomyces pombe Proteins/metabolism , Spindle Apparatus/metabolism , Time-Lapse Imaging
8.
J Cell Sci ; 123(Pt 19): 3284-93, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20826461

ABSTRACT

Meiosis is a specialised form of the cell cycle that gives rise to haploid gametes. In Schizosaccharomyces pombe, the products of meiosis are four spores, which are formed by encapsulation of the four meiosis II nuclei within the cytoplasm of the zygote produced by fusion of the mating cells. The S. pombe spindle pole body is remodelled during meiosis II and membrane vesicles are then recruited there to form the forespore membrane, which encapsulates the haploid nucleus to form a prespore. Spore wall material is then deposited, giving rise to the mature spore. The septation initiation network is required to coordinate cytokinesis and mitosis in the vegetative cycle and for spore formation in the meiotic cycle. We have investigated the role of the SIN regulator dma1p in meiosis; we find that although both meiotic divisions occur in the absence of dma1p, asci frequently contain fewer than four spores, which are larger than in wild-type meiosis. Our data indicate that dma1p acts in parallel to the leading-edge proteins and septins to assure proper formation for the forespore membrane. Dma1p also contributes to the temporal regulation of the abundance of the meiosis-specific SIN component mug27p.


Subject(s)
Cell Cycle Proteins/metabolism , Mutant Proteins/metabolism , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/physiology , Animals , Animals, Genetically Modified , Cell Cycle Proteins/genetics , Colony Count, Microbial , Meiosis/genetics , Membrane Fusion/genetics , Mutant Proteins/genetics , Protein Transport/genetics , Schizosaccharomyces pombe Proteins/genetics , Signal Transduction , Spores, Fungal/genetics , Spores, Fungal/isolation & purification , Transgenes/genetics
9.
Curr Biol ; 19(22): R1040-2, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-19948143

ABSTRACT

A new study of fission yeast cell division has revealed a coupling between cytoplasmic partitioning and the turning-off of cytokinesis signalling that may be mediated by asymmetric protein distribution.


Subject(s)
Cytokinesis , Schizosaccharomyces/cytology , Epistasis, Genetic , Schizosaccharomyces/genetics , Signal Transduction
10.
Biochem Soc Trans ; 36(Pt 3): 411-5, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18481970

ABSTRACT

The fission yeast septation initiation network, or SIN, is a signal transduction network that is required for septum formation in Schizosaccharomyces pombe. Its activity is tightly regulated through the cell cycle, to ensure proper co-ordination of mitosis and cytokinesis. SIN signalling requires three protein kinases for its function and is mediated by a ras-superfamily GTPase. We discuss the elements of the SIN and how they are regulated.


Subject(s)
Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/cytology , Schizosaccharomyces/metabolism , Cell Division , Meiosis , Protein Transport , Schizosaccharomyces/growth & development
11.
J Cell Sci ; 121(Pt 5): 601-8, 2008 Mar 01.
Article in English | MEDLINE | ID: mdl-18252797

ABSTRACT

Cytokinesis in Schizosaccharomyces pombe begins at mitotic entry, when the site of division is defined by formation of the contractile acto-myosin ring (CAR) at the cell cortex. Contraction of the CAR and formation of the division septum are triggered at the end of mitosis by septation initiation network (SIN) proteins associated with the spindle pole body (SPB). SIN signalling requires activation of the GTPase Spg1p, which is regulated by the bipartite GTPase-activating protein (GAP) Byr4p-Cdc16p. We show that, for Spg1p to associate with the SPB, it must be bound to its GAP or to its mitotic effector, the protein kinase Cdc7p. Analysis of the GAP proteins reveals that the steady-state level of Byr4p reflects that of Spg1p. Furthermore, if the interaction of Byr4p with Spg1p is compromised, the level of Byr4p decreases dramatically. The adaptation of the level of Byr4p to that of Spg1p requires the presence of Cdc16p and is mediated by proteasome-dependent destruction. It requires neither association with the SPB nor an active SIN. We propose a mechanism that limits the amount of the Byr4p-Cdc16p GAP to the amount required to inhibit Spg1p signalling.


Subject(s)
Cytokinesis/physiology , GTP Phosphohydrolases/metabolism , GTPase-Activating Proteins/metabolism , Gene Expression Regulation, Fungal/physiology , Homeostasis/physiology , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/enzymology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , GTP Phosphohydrolases/genetics , GTPase-Activating Proteins/genetics , Mitosis/physiology , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Protein Binding/physiology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/genetics , Signal Transduction/physiology , Spindle Apparatus/genetics , Spindle Apparatus/metabolism , Up-Regulation/physiology
12.
J Cell Sci ; 121(Pt 6): 843-53, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18303049

ABSTRACT

The protein kinase Cdc2p is the master regulator of cell cycle progression in the fission yeast Schizosaccharomyces pombe. It is required both for entry into mitosis and for onset of DNA replication. Cdc2p must be inactivated to permit exit from mitosis, licensing of replication origins and cytokinesis. To study the role of Cdc2p in greater detail, we generated a cdc2 allele that is sensitive to an inhibitory ATP analogue. We show that the inhibitor-induced cell cycle arrest is reversible and examine the effect of inhibiting Cdc2p on the regulation of the septation initiation network (SIN), which controls the initiation of cytokinesis in S. pombe. We found that specific inactivation of Cdc2p in a mitotically arrested cell promotes the asymmetrical recruitment of SIN proteins to the spindle poles and the recruitment of the most downstream SIN components and beta-(1,3) glucan synthase to the contractile ring. Thus, we conclude that inactivation of Cdc2p is sufficient to activate the SIN and promote cytokinesis.


Subject(s)
CDC2 Protein Kinase/physiology , Cytokinesis , Schizosaccharomyces pombe Proteins/physiology , Schizosaccharomyces/cytology , CDC2 Protein Kinase/antagonists & inhibitors , CDC2 Protein Kinase/genetics , Cell Cycle/drug effects , Cell Cycle Proteins/physiology , Meiosis , Mitosis , Mutation , Protein Kinases/metabolism , Protein Tyrosine Phosphatases/physiology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Schizosaccharomyces/enzymology , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/analysis , Schizosaccharomyces pombe Proteins/antagonists & inhibitors , Schizosaccharomyces pombe Proteins/genetics
13.
J Cell Sci ; 119(Pt 14): 2882-91, 2006 Jul 15.
Article in English | MEDLINE | ID: mdl-16787941

ABSTRACT

When nutrients are abundant, S. pombe cells grow as rods, dividing by fission after formation of a medially placed cell wall or division septum. Septum formation is triggered by a group of proteins, called the septation initiation network or SIN, that trigger contraction of the acto-myosin contractile ring at the end of mitosis. Ectopic activation of the SIN can uncouple septum formation from other cell-cycle events, whereas loss of SIN signalling gives rise to multinucleated cells due to the failure of cytokinesis. When starved, S. pombe cells of opposite mating types fuse to form a diploid zygote that undergoes meiosis and produces four spores. No septa or contractile rings are formed during meiosis. In this study, we have investigated the role of the SIN in meiosis. Our data show that, whereas the meiotic divisions appear normal, SIN mutants cannot form spores. Forespore membrane formation is initiated, but the nuclei are not encapsulated properly. The SIN proteins localise to the spindle pole body in meiosis. The protein kinases Sid1p and Cdc7p do not associate with the spindle pole body until meiosis II, when forespore membrane deposition begins. These data indicate a role for the SIN in regulating spore formation during meiosis.


Subject(s)
Meiosis , Schizosaccharomyces/cytology , Schizosaccharomyces/metabolism , Spores, Fungal/cytology , Spores, Fungal/metabolism , Cell Membrane/metabolism , Diploidy , Mutation/genetics , Protein Transport , Schizosaccharomyces/physiology , Schizosaccharomyces pombe Proteins/metabolism , Signal Transduction , Spores, Fungal/growth & development
14.
Curr Biol ; 15(15): R605-7, 2005 Aug 09.
Article in English | MEDLINE | ID: mdl-16085485

ABSTRACT

A novel mutant screen in fission yeast has identified the 'ethanol dependent' protein etd1p as a potential link between the septation initiation network (SIN), which initiates cytokinesis, and the actomyosin contractile ring that drives separation of the two daughter cells at the end of mitosis.


Subject(s)
Actomyosin/metabolism , Cell Division/physiology , Cytokinesis/physiology , Models, Biological , Cell Cycle Proteins/metabolism , Ethanol/metabolism , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Schizosaccharomyces , Schizosaccharomyces pombe Proteins/metabolism , Signal Transduction/physiology
15.
Curr Biol ; 14(17): R722-30, 2004 Sep 07.
Article in English | MEDLINE | ID: mdl-15341766

ABSTRACT

The septation initiation network (SIN) triggers the onset of cytokinesis in the fission yeast Schizosaccharomyces pombe by promoting contraction of the medially placed F-actin ring. SIN signaling is regulated by the polo-like kinase plo1p and by cdc2p, the initiator of mitosis, and its activation is co-ordinated with other events in mitosis to ensure that cytokinesis does not begin until chromosomes have been separated. Though the SIN controls the contractile ring, the signal originates from the poles of the mitotic spindle. Recent studies suggest that the spindle pole body may act as a dynamic assembly site for active SIN signaling complexes. In the budding yeast Saccharomyces cerevisiae the counterpart of the SIN, called the MEN, mediates both mitotic exit and cytokinesis, in part through regulating activation of the phosphoprotein phosphatase Cdc14p. Flp1p, the S. pombe ortholog of Cdc14p, is not essential for mitotic exit, but may contribute to an orderly mitosis-G1 transition by regulating the destruction of the mitotic inducer cdc25p.


Subject(s)
Cell Cycle Proteins/metabolism , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Models, Biological , Signal Transduction/physiology , Yeasts/physiology , Actins/metabolism , Cytokinesis/physiology , Spindle Apparatus/physiology
16.
J Cell Sci ; 117(Pt 18): 4265-75, 2004 Aug 15.
Article in English | MEDLINE | ID: mdl-15292395

ABSTRACT

In the fission yeast Schizosaccharomyces pombe, the onset of septum formation is signalled via the septation initiation network (SIN) involving several protein kinases and a GTPase. Arabidopsis thaliana and Brassica napus proteins homologous to fission yeast spg1p (AtSGP1, AtSGP2), cdc7p (AtMAP3K epsilon 1, AtMAP3K epsilon 2, BnMAP3K epsilon 1) and sid1p (AtMAP4K alpha 1, AtMAP4K alpha 2, BnMAP4K alpha 2) exhibit a significant similarity. The plant proteins AtSGP1/2 and BnMAP4K alpha 2 are able to complement the S. pombe mutant proteins spg1-B8 and sid1-239, respectively and to induce mutisepta when overexpressed in wild-type yeast. Yeast two-hybrid assays demonstrated interactions both between plant proteins and between plant and yeast proteins of the SIN pathway. However, the primary structure of the proteins as well as the partial complementation of yeast mutants indicates that plant homologous proteins and their yeast counterparts have diverged during evolution. Real-time RT-PCR studies demonstrated plant SIN-related gene expression in all organs tested and a co-expression pattern during the cell cycle, with a higher accumulation at G(2)-M. During interphase, the plant SIN-related proteins were found to co-localise predominantly in the nucleolus of the plant cells, as shown by fusions to green fluorescent protein. These data suggest the existence of a plant SIN-related pathway.


Subject(s)
Arabidopsis Proteins/metabolism , Cell Nucleolus/metabolism , Plant Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Brassica napus/genetics , Brassica napus/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Nucleolus/genetics , Gene Expression Regulation, Fungal/genetics , Gene Expression Regulation, Plant/genetics , Mitosis , Molecular Sequence Data , Mutation/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Plant Proteins/genetics , Protein Kinases/genetics , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Signal Transduction/genetics
17.
Genes Dev ; 18(9): 1007-21, 2004 May 01.
Article in English | MEDLINE | ID: mdl-15132994

ABSTRACT

Mitotic exit in Saccharomyces cerevisiae and septation in Schizosaccharomyces pombe are regulated by a conserved signaling network called the mitotic exit and septum initiation networks (SIN), respectively. The network is active on one of the two anaphase B spindle-pole bodies (SPBs). Whereas the inherent asymmetry of growth by budding accounts for elements of the asymmetry in S. cerevisiae, it has been unclear how, or why, the pathway is asymmetric in S. pombe. We show that elements of SPB duplication in S. pombe are conservative, and that the SIN is active on the new SPB. SIN association with the new SPB persists after transient depolymerization of microtubules. The localization of the NIMA-related kinase, Fin1, reveals further complexity in SPB inheritance. Fin1 associates with the SPB bearing the older components in all cells and with the "new" SPB in half of the population. Fin1 only binds the new SPB when this new SPB has arisen from the duplication of an SPB that is two or more cycles old. Thus, each of the four SPBs generated over two consecutive cell cycles are different, because they have distinct fates in the next cell cycle. Fin1 binds the SPB once the SIN is active and the association requires the SIN inhibitors Byr4 and Cdc16. Fin1 physically associates with Byr4. Compromising Fin1 function leads to SIN activation on both anaphase B SPBs and promotes septation, indicating that Fin1 restrains SIN activity on the old SPB.


Subject(s)
Schizosaccharomyces/cytology , Schizosaccharomyces/enzymology , Cell Cycle , Centrioles/enzymology , Genes, Fungal , Models, Biological , Mutation , Schizosaccharomyces/genetics , Schizosaccharomyces/growth & development , Spindle Apparatus/enzymology
18.
FEBS Lett ; 565(1-3): 176-80, 2004 May 07.
Article in English | MEDLINE | ID: mdl-15135075

ABSTRACT

The initiation of cytokinesis in the fission yeast Schizosaccharomyces pombe is signalled by the septation initiation network (SIN). Signalling originates from the spindle pole body (SPB), where SIN proteins are anchored by a scaffold composed of cdc11p and sid4p. Cdc11p links the other SIN proteins to sid4p and the SPB. Homologues of cdc11p have been identified in Saccharomyes cerevisiae (Nud1p) and human cells (Centriolin). We have defined functional domains of cdc11p by analysis of deletion mutants. We demonstrate that the C-terminal end of cdc11p is necessary for SPB localisation. We also show that the N-terminal domain is necessary and sufficient for signal transduction, since tethering of this domain to the SPB will substitute for cdc11p in SIN function.


Subject(s)
Cell Cycle Proteins/physiology , Cytoskeletal Proteins/physiology , Saccharomyces cerevisiae Proteins/physiology , Schizosaccharomyces/metabolism , Signal Transduction , Cell Cycle Proteins/chemistry , Cell Division , Cytoskeletal Proteins/chemistry , Deoxyribonucleases/metabolism , Drosophila Proteins/metabolism , Gene Deletion , Green Fluorescent Proteins , Luminescent Proteins/metabolism , Mutation , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Spindle Apparatus , Temperature , tRNA Methyltransferases
19.
Curr Biol ; 13(2): 168-72, 2003 Jan 21.
Article in English | MEDLINE | ID: mdl-12546793

ABSTRACT

The fission yeast septation initiation network (SIN) triggers the onset of septum formation and cytokinesis. SIN proteins signal from the spindle pole body (SPB), to which they bind in a cell cycle-dependent manner, via the scaffold proteins sid4p and cdc11p. cdc11p becomes hyperphosphorylated during anaphase, when the SIN is active. We have investigated the phosphorylation state of cdc11p during mitosis in various mutant backgrounds. We show that association of cdc11p with the spindle pole body is required for its phosphorylation and that ectopic activation of the SIN results in hyperphosphorylation of cdc11p. We demonstrate that mitotic hyperphosphorylation of cdc11p requires the activity of cdc7p and that its dephosphorylation at the end of mitosis requires PP2A-par1p. Furthermore, spindle checkpoint arrest prevents cdc11p hyperphosphorylation. Finally, we show that the septation inhibitor byr4p interacts preferentially with hypophosphorylated cdc11p. We conclude that cdc11p hyperphosphorylation correlates with activation of the SIN and that this may be mediated primarily by cdc7p in vivo.


Subject(s)
Cell Cycle Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Cell Cycle Proteins/genetics , Genes, Fungal , Mitosis , Mutation , Phosphoprotein Phosphatases/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , Schizosaccharomyces/cytology , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/genetics , Spindle Apparatus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...