Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Semin Nucl Med ; 51(2): 143-156, 2021 03.
Article in English | MEDLINE | ID: mdl-33509371

ABSTRACT

Lung cancer is the leading cause of cancer related death around the world although early diagnosis remains vital to enabling access to curative treatment options. This article briefly describes the current role of imaging, in particular 2-deoxy-2-[18F]fluoro-D-glucose (FDG) PET/CT, in lung cancer and specifically the role of artificial intelligence with CT followed by a detailed review of the published studies applying artificial intelligence (ie, machine learning and deep learning), on FDG PET or combined PET/CT images with the purpose of early detection and diagnosis of pulmonary nodules, and characterization of lung tumors and mediastinal lymph nodes. A comprehensive search was performed on Pubmed, Embase, and clinical trial databases. The studies were analyzed with a modified version of the Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) and Prediction model Risk Of Bias Assessment Tool (PROBAST) statement. The search resulted in 361 studies; of these 29 were included; all retrospective; none were clinical trials. Twenty-two records evaluated standard machine learning (ML) methods on imaging features (ie, support vector machine), and 7 studies evaluated new ML methods (ie, deep learning) applied directly on PET or PET/CT images. The studies mainly reported positive results regarding the use of ML methods for diagnosing pulmonary nodules, characterizing lung tumors and mediastinal lymph nodes. However, 22 of the 29 studies were lacking a relevant comparator and/or lacking independent testing of the model. Application of ML methods with feature and image input from PET/CT for diagnosing and characterizing lung cancer is a relatively young area of research with great promise. Nevertheless, current published studies are often under-powered and lacking a clinically relevant comparator and/or independent testing.


Subject(s)
Lung Neoplasms , Positron Emission Tomography Computed Tomography , Artificial Intelligence , Fluorodeoxyglucose F18 , Humans , Lung Neoplasms/diagnostic imaging , Lymph Nodes , Positron-Emission Tomography , Retrospective Studies
2.
Radiother Oncol ; 144: 72-78, 2020 03.
Article in English | MEDLINE | ID: mdl-31733491

ABSTRACT

AIM: The aim was to validate promising radiomic features (RFs)1 on 18F-flourodeoxyglucose positron emission tomography/computed tomography-scans (18F-FDG PET/CT) of non-small cell lung cancer (NSCLC) patients undergoing definitive chemo-radiotherapy. METHODS: 18F-FDG PET/CT scans performed for radiotherapy (RT) planning were retrieved. Auto-segmentation with visual adaption was used to define the primary tumour on PET images. Six pre-selected prognostic and reproducible PET texture -and shape-features were calculated using texture respectively shape analysis. The correlation between these RFs and metabolic active tumour volume (MTV)3, gross tumour volume (GTV)4 and maximum and mean of standardized uptake value (SUV)5 was tested with a Spearman's Rank test. The prognostic value of RFs was tested in a univariate cox regression analysis and a multivariate cox regression analysis with GTV, clinical stage and histology. P-value ≤ 0.05 were considered significant. RESULTS: Image analysis was performed for 233 patients: 145 males and 88 females, mean age of 65.7 and clinical stage II-IV. Mean GTV was 129.87 cm3 (SD 130.30 cm3). Texture and shape-features correlated more strongly to MTV and GTV compared to SUV-measurements. Four RFs predicted PFS in the univariate analysis. No RFs predicted PFS in the multivariate analysis, whereas GTV and clinical stage predicted PFS (p = 0.001 and p = 0.008 respectively). CONCLUSION: The pre-selected RFs were insignificant in predicting PFS in combination with GTV, clinical stage and histology. These results might be due to variations in technical parameters. However, it is relevant to question whether RFs are stable enough to provide clinically useful information.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/radiotherapy , Female , Fluorodeoxyglucose F18 , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Male , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography , Prognosis , Radiopharmaceuticals , Retrospective Studies , Tumor Burden
SELECTION OF CITATIONS
SEARCH DETAIL