Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Nanotechnol ; 15: 199-206, 2024.
Article in English | MEDLINE | ID: mdl-38379929

ABSTRACT

Understanding the intricate interplay between disorder and superconductivity has become a key area of research in condensed matter physics, with profound implications for materials science. Recent studies have shown that spatial correlations of disorder potential can improve superconductivity, prompting a re-evaluation of some theoretical models. This paper explores the influence of disorder correlations on the fundamental properties of superconducting systems, going beyond the traditional assumption of spatially uncorrelated disorder. In particular, we investigate the influence of disorder correlations on key spectroscopic superconductor properties, including the density of states, as well as on the matrix elements of the superconducting coupling constant and their impact on the localization length. Our findings offer valuable insights into the role of disorder correlations in shaping the behavior of superconducting materials.

2.
Rev Sci Instrum ; 89(3): 033907, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29604766

ABSTRACT

A technique is presented of restoring the electronic density of states of the valence band from data of X-ray photoelectron spectroscopy (XPS). The originality of the technique consists in using a stochastic procedure to solve an integral equation relating the density of states and the experimental X-ray photoelectron spectra via the broadening function. To obtain the broadening function, only the XPS spectra of the core levels are needed. The results are presented for bulk sample of gold and tungsten and nanoclusters of tantalum; the possibility of using the results to determine the density of states of low-dimensional structures, including ensembles of metal nanoclusters, is demonstrated.

3.
Article in English | MEDLINE | ID: mdl-25906029

ABSTRACT

There is a growing need for the development of atomic and nuclear frequency standards because of the important contribution of methods for precision time and frequency measurements to the development of fundamental science, technology, and the economy. It is also conditioned by their potential use in optical clocks and quantum logic applications. It is especially important to develop a universal method that could allow one to use ions of most elements effectively (including ones that are not easily evaporated) proposed for the above-mentioned applications. A linear quadrupole ion trap for the optical spectroscopy of electron and nuclear transitions has been developed and evaluated experimentally. An ion source construction is based on an ultra-high vacuum evaporator in which a metal sample is subjected to an electron beam of energy up to 1 keV, resulting in the appearance of gaseous atoms and ions of various charge state. The linear ion trap consists of five successive quadrupole sections including an entrance quadrupole section, quadrupole mass filter, quadrupole ion guide, ion-trap section, and exit quadrupole section. The same radiofrequency but a different direct current voltage feeds the quadrupole sections. The instrument allows the mass and energy selected trapping of ions from ion beams of various intensities and their localization in the area of laser irradiation. The preliminary results presented show that the proposed instrument and methods allow one to produce effectively up to triply charged thorium ions as well as to trap ions for future spectroscopic study. The instrument is proposed for future use in optical clocks and quantum logic application development.

SELECTION OF CITATIONS
SEARCH DETAIL
...