Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Cartilage ; 13(1): 19476035221075951, 2022.
Article in English | MEDLINE | ID: mdl-35189712

ABSTRACT

OBJECTIVE: Implantation of tissue-engineered tracheal grafts represents a visionary strategy for the reconstruction of tracheal wall defects after resections and may develop into a last chance for a number of patients with severe cicatricial stenosis. The use of a decellularized tracheal substrate would offer an ideally stiff graft, but the matrix density would challenge efficient remodeling into a living cartilage. In this study, we hypothesized that the pores of decellularized laser-perforated tracheal cartilage (LPTC) tissues can be colonized by adult nasal chondrocytes (NCs) to produce new cartilage tissue suitable for the repair of tracheal defects. DESIGN: Human, native tracheal specimens, isolated from cadaveric donors, were exposed to decellularized and laser engraving-controlled superficial perforation (300 µm depth). Human or rabbit NCs were cultured on the LPTCs for 1 week. The resulting revitalized tissues were implanted ectopically in nude mice or orthotopically in tracheal wall defects in rabbits. Tissues were assayed histologically and by microtomography analyses before and after implantation. RESULTS: NCs were able to efficiently colonize the pores of the LPTCs. The extent of colonization (i.e., percentage of viable cells spanning >300 µm of tissue depth), cell morphology, and cartilage matrix deposition improved once the revitalized constructs were implanted ectopically in nude mice. LPTCs could be successfully grafted onto the tracheal wall of rabbits without any evidence of dislocation or tracheal stenosis, 8 weeks after implantation. Rabbit NCs, within the LPTCs, actively produced new cartilage matrix. CONCLUSION: Implantation of NC-revitalized LPTCs represents a feasible strategy for the repair of tracheal wall defects.


Subject(s)
Engraving and Engravings , Tissue Engineering , Animals , Cartilage/transplantation , Humans , Lasers , Mice , Mice, Nude , Rabbits , Tissue Engineering/methods , Tissue Scaffolds
2.
Pharmaceutics ; 14(1)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35057083

ABSTRACT

Over the last decade, targeted alpha therapy has demonstrated its high effectiveness in treating various oncological diseases. Lead-212, with a convenient half-life of 10.64 h, and daughter alpha-emitter short-lived 212Bi (T1/2 = 1 h), provides the possibility for the synthesis and purification of complex radiopharmaceuticals with minimum loss of radioactivity during preparation. As a benefit for clinical implementation, it can be milked from a radionuclide generator in different ways. The main approaches applied for these purposes are considered and described in this review, including chromatographic, solution, and other techniques to isolate 212Pb from its parent radionuclide. Furthermore, molecules used for lead's binding and radiochemical features of preparation and stability of compounds labeled with 212Pb are discussed. The results of preclinical studies with an estimation of therapeutic and tolerant doses as well as recently initiated clinical trials of targeted radiopharmaceuticals are presented.

3.
Bioimpacts ; 12(1): 51-55, 2022.
Article in English | MEDLINE | ID: mdl-35087716

ABSTRACT

Introduction: Mesenchymal stromal cells (MSCs) administration is an effective option for the treatment of diabetic foot ulcers (DFUs). However, to date, studies assessing long-term outcomes and evaluating skin parameters after cell-based therapy are lacking. We presented the clinical outcomes of 3 patients, treated for DFUs with the bone marrow MSCs 3 years earlier. Methods: Ultrasound examination was used to compare collagen density and epidermal thickness in areas of healed ulcers in comparison with non-affected skin used as a control. Ultrasound and dermatoscopy were used to exclude neoplasm formation, to assess scar contracture and wound recurrence. Results: In all patients, no ulcer recurrence was detected, which was lower than the expected 60% rate of re-ulceration in diabetic patients in a 3-year period (OD [odds ratio] = 0.095, P = 0.12). No neoplasm formation, no contracture of hypertrophic scar, and adjacent tissue were registered. Collagen ultrasound density was decreased by 57% (P = 0.053) and epidermal thickness was increased by 72% (P = 0.01) in the area of healed ulcers in all patients. Conclusion: MSCs therapy alone did not result in the complete restoration of the skin parameters within a 3-year period. MSCs may represent important adjuvant to the therapy, however, other novel approaches are required to achieve better results.

4.
Cytotherapy ; 20(3): 361-374, 2018 03.
Article in English | MEDLINE | ID: mdl-29397307

ABSTRACT

BACKGROUND: Menstrual blood is only recently and still poorly studied, but it is an abundant and noninvasive source of highly proliferative mesenchymal stromal cells (MSCs). However, no appropriate isolation method has been reported due to its high viscosity and high content of clots and desquamated epithelium. METHODS: We studied three different isolation approaches and their combinations: ammonium-containing lysing buffer, distilled water and gradient-density centrifugation. We tested the proliferative capacity, morphology, surface markers and pluripotency of the resulting cells. RESULTS: Our isolation method yields up to four million nucleated cells per milliliter of initial blood, of which about 0.2-0.3% are colony-forming cells expressing standard mesenchymal markers CD90, CD105 and CD73, but not expressing CD45, CD34, CD117, CD133 or HLA-G. The cells have high proliferative potential (doubling in 26 h) and the ability to differentiate into adipocytes and osteocytes. Early endometrial MSCs (eMSCs) express epithelial marker cytokeratin 7 (CK7). CK7 is easily induced in later passages in a prohepatic environment. We show for the first time that a satisfactory and stable yield of eMSCs is observed throughout the whole menstrual period (5 consecutive days) of a healthy woman. DISCUSSION: The new cost/yield adequate method allows isolation from menstrual blood a relatively homogenous pool of highly proliferative MSCs, which seem to be the best candidates for internal organ therapy due to their proepithelial background (early expression of CK7 and its easy induction in later passages) and for mass cryobanking due to their high yield and availability.


Subject(s)
Cell Separation/methods , Endometrium/cytology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Adipocytes/cytology , Adipocytes/physiology , Antigens, CD/metabolism , Biomarkers/metabolism , Cell Differentiation/physiology , Cell Proliferation/physiology , Cells, Cultured , Female , Humans , Osteocytes/cytology , Osteocytes/physiology
SELECTION OF CITATIONS
SEARCH DETAIL