Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Planta ; 254(2): 30, 2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34272608

ABSTRACT

MAIN CONCLUSION: The analysis of the state of research on the chemical composition, functional nature and structure of the main components of the lignin-carbohydrate matrix allows considering the wood substance as a thermodynamically self-organizing nanobiocomposite system. Features of biosynthesis of the wood matrix main biopolymers, the formation of their functional nature and structure determine the complex hierarchical organization of cell walls. The supramolecular level of biosynthesis considers the interaction of cell wall components. On the one hand, these are questions of dynamics of cell walls synthesis and processes of self-organization that control the formation of chaotic objects of biological origin; on the other hand, it is the question of thermodynamic compatibility of plant tissue components. Various models of structural organization are currently being considered, focusing on various features (biological, chemical, structural) of wood substance. At the same time, the lignin-carbohydrate matrix is a three-component system of natural polymers: lignin-hemicelluloses-cellulose, the state of which is described by specific values of thermodynamic parameters that characterize the degree of its stability. The new approach proposed in this paper allows considering the plant lignin-carbohydrate matrix from the standpoint of physical chemistry of polymer as quasi-equilibrium, thermodynamically limited ordered system of biopolymers. Thus, the biochemical processes of synthesis and self-organization lead to the formation of a complex multicomponent system of wood substance, considered as a nanobiocomposite. This determines the need to study the applicability of the fundamental cycle "structure-functional nature-properties" from the standpoint of physical chemistry of biopolymers both for the investigation of plant objects and for the development of modern technologies for complex processing based on the principles of "green chemistry".


Subject(s)
Lignin , Wood , Biopolymers , Cell Wall , Cellulose
2.
Planta ; 241(5): 1231-9, 2015 May.
Article in English | MEDLINE | ID: mdl-25650153

ABSTRACT

MAIN CONCLUSION: The investigations confirm the physicochemical nature of the structure and self-assembly of wood substance and endorse its application in plant species. The characteristic morphological features, ultra-microstructure, and submolecular structure of coniferous wood matrix using junipers as the representative tree were investigated by scanning electron (SEM) and atomic-force microscopy (AFM). Novel results on the specific composition and cell wall structure features of the common juniper (Juniperus Communis L.) were obtained. These data confirm the possibility of considering the wood substance as a nanobiocomposite. The cellulose nanofibrils (20-50 nm) and globular-shaped lignin-carbohydrate structures (diameter of 5-60 nm) form the base of such a nanobiocomposite.


Subject(s)
Juniperus/ultrastructure , Wood/ultrastructure , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...