Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 832: 155022, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35390387

ABSTRACT

Decarbonization of economy is intended to reduce the consumption of non-renewable energy sources and emissions from them. One of the major components of decarbonization are "green energy" technologies, e.g. wind turbines and electric vehicles. However, they themselves create new sustainability challenges, e.g. use of green energy contributes to the reduction of consumption of fossil fuels, on one hand, but at the same time it increases demand for permanent magnets containing considerable amounts of rare earth elements (REEs). This article provides the first global analysis of environmental impact of using rare earth elements in green energy technologies. The analysis was performed applying system dynamics modelling methodology integrated with life cycle assessment and geometallurgical approach. We provide evidence that an increase by 1% of green energy production causes a depletion of REEs reserves by 0.18% and increases GHG emissions in the exploitation phase by 0.90%. Our results demonstrate that between 2010 and 2020, the use of permanent magnets has resulted cumulatively in 32 billion tonnes CO2-equivalent of GHG emissions globally. It shows that new approaches to decarbonization are still needed, in order to ensure sustainability of the process. The finding highlights a need to design and implement various measures intended to increase REEs reuse, recycling (currently below 1%), limit their dematerialization, increase substitution and develop new elimination technologies. Such measures would support the development of appropriate strategies for decarbonization and environmentally sustainable development of green energy technologies.


Subject(s)
Metals, Rare Earth , Environment , Fossil Fuels , Recycling , Renewable Energy , Technology
2.
Sci Total Environ ; 818: 151853, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-34822892

ABSTRACT

Many regions around the world are suffering from water stress, and desalinated water and recycled water are seen as alternatives for meeting the water demand. However, high energy consumption and associated greenhouse gas emissions are some of the main environmental impacts. This is notable for many arid and semi-arid countries where desalination and water recycling are considered options for ensuring water resources availability. This research presents the incorporation of the quantification of greenhouse gas emissions generated during the operation of desalination and wastewater treatment plants in the assessment of water stress levels using the water stress indicator adopted by the 2030 Agenda for Sustainable Development. Chile was chosen as a case study, as it is a country where there is a considerable difference between the availability of conventional water sources and the water demand, and the electrical grid is fed mainly by fossil fuels. The methodology proposed allows calculating the indirect greenhouse gas emissions due to electrical consumption for the operation of desalination and wastewater treatment plants, and the direct greenhouse gas emissions coming from biological processes used in wastewater treatment plants. The results showed that Chilean arid climate zones will not experience water stress in the future at the regional level, mainly because of the installation of several desalination plants by 2030. Meanwhile, recycled water from the urban sector will slightly contribute to the reduction in the level of water stress in almost all Chilean regions by 2030. Moreover, desalination and wastewater treatment plant will contribute only between 0.34% and 0.75% of total greenhouse gas emitted in Chile by 2030. Therefore, the operation of these industrial systems for facing water scarcity problems in northern and central zones of Chile is a suitable alternative because it does not generate large environmental problems.


Subject(s)
Greenhouse Gases , Water Purification , Chile , Dehydration , Greenhouse Effect , Humans , Seawater , Wastewater
3.
Sci Total Environ ; 777: 146060, 2021 Jul 10.
Article in English | MEDLINE | ID: mdl-33676224

ABSTRACT

To be able to grow crops, we have interfered with Earth's reserves of one of top three essential elements, phosphorus (P), as to which we face a problem related to its high consumption compared to available resources. This forces us to follow the alternative of closing the phosphorus loop from a circular economy perspective. However, there is a lack of research on regional and global social sustainability in this area, as emphasized in the United Nations' Agenda 2030 goals for sustainable development. In this paper, we address social challenges involved in global phosphorus supply chain, such as eradicating poverty, child labor and malnutrition; promoting gender equality; providing decent work and economic growth; maintaining sustainable water use; and achieving food security. Our research is driven by the question of whether the circular economy aims to direct phosphorus management towards tackling social issues associated with its supply chain. We use system dynamics modelling by combining the concept of material flow analysis and social life cycle assessment. Detailed analysis at regional and global levels indicates a paradoxical social impact of phosphorus circular model. This reflects the multiple stakeholders involved, and the regional interactions with phosphorus circular economy transitions. Improvements can be demonstrated in reducing poverty and providing safer work environment in many regions, e.g., Western Asia (93%), New Zealand, Central Asia, and Europe (44-61%), while achieving employment targets is limited in Northern and Eastern Europe. Circular model fails to promote gender equality, it also exacerbates exploitative child work problem for the Caribbean and most Africa. It provides sufficient nutrition to North America, Australia/New Zealand, and Northern Europe. It achieves water use targets in several regions with 53% savings worldwide. Finally, circular model contributes to P efficiency (average balance of 1.21 kgP/ha) and strengthens P security within most regions with an average of 64%.

4.
J Environ Manage ; 284: 112060, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33549949

ABSTRACT

The re-processing of mine tailings to obtain critical raw materials (CRMs) could reduce the mining of new deposits as well as ensure the profitable use of the waste materials. Though, it requires large scale industrial installations and the development of specialized technologies to obtain CRMs. New investment in mining activities is an operation, engaging for considerable financial resources involved. The scale of such an endeavor makes a new mining activity a high-risk operation due to several uncertainties present. Therefore, there is an acute need to use new tools to assess the risk associated with the planning and development of new mining activities. This study introduces a framework to evaluate the economic risk related to the re-processing of mine tailings to obtain CRMs. The framework, based on real options analysis (ROA), and sensitivity and uncertainty analysis, was applied to analyze the profitability of using mine tailings as a source of CRMs in the Chilean mining industry. The novelty of this approach consists in enabling the investment decision making including the uncertainties related to a novel investment mining project. RESULTS: show that tailing storage facilities in Chile have some stocks of CRMs, like scandium, whose extraction could be profitable. For the data used, the results of uncertainty and sensitivity analyses show that capital expenditure has a more significant influence than the other variables. Therefore, for the case of mine tailings re-processing, it is essential to develop processes and technologies that enable lower capital expenses.


Subject(s)
Mining , Chile , Feasibility Studies
5.
Resour Policy ; 71: 102019, 2021 Jun.
Article in English | MEDLINE | ID: mdl-36569185

ABSTRACT

The global crisis caused by COVID-19 pandemic exerted significant impact upon most industries, however, the fertilizer industry has shown some resilience in the supply chain during the crisis. The main research question of the paper concerns the major factors ensuring the resilience of fertilizer companies under such circumstances. The paper presents current situation on the mineral fertilizers market, the influence of COVID-19 pandemic on fertilizer companies, and identifies the main market and industry trends. Then, it offers analytical framework for revealing key factors of success (potential competitive advantages) in the fertilizer industry as well as discusses their role in ensuring resilience of the companies during the crisis. The paper suggests categorization of competitive advantages that helps to identify the sustainable ones. It also reveals special role played by competitive advantages, based on core competencies, and justifies why they need to be developed in this new situation caused by the pandemic. One of the main findings in the paper is the conclusion about «global immunity¼ of fertilizer companies to environmental turbulence, as well as the conclusion about the new role and the need to transform traditional competitive advantages for the further successful growth of fertilizer companies.

6.
Sci Total Environ ; 672: 515-524, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30974352

ABSTRACT

Phosphorus (P) is an important critical material essential for crops cultivation and animal husbandry. Effective phosphorous recycling is considered one of the most significant factors in alleviating its criticality. However, despite the importance of phosphorous recycling, its sustainability is not studied extensively. This paper aims to answer the question if recycling of phosphorus is an environmentally sustainable option. To address this problem, two issues are analyzed in this paper: energy consumption and greenhouse gas (GHG) emissions in phosphorous recycling. The analysis was performed by simulating mass and energy flows in the global phosphorus supply chain (from mining to recycling) in order to understand and analyze its environmental impact in 2000-2050. The results of simulation show that around 82% of recycled phosphorous originates from manure. Moreover, the calculations indicate that about 70% of total GHG emissions from phosphorous recycling is caused by wastewater processing. In addition, the results show that phosphorous obtained from recycled wastewater constitutes only 2% of the whole amount recovered in the recycling process. Therefore, the obtained results show a clear need for a detailed analysis of the sustainability of phosphorous recycling processes. Moreover, the analysis of scenarios of phosphorus consumption indicates that GHG emissions increase slowly in the mining phase and grow exponentially in the recycling stage. The main finding of this paper contradicts the general opinion about environmental friendliness of recycling. It shows that phosphorus recycling is not a sustainable solution in a longer perspective.

7.
J Environ Manage ; 235: 423-431, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30710852

ABSTRACT

This study proposes a new evaluation method based on expert scoring and data normalization to optimize operational conditions of sludge pyrolysis and assess the comprehensive benefits of the adsorption process in coking wastewater treatment. Pyrolysis temperature, holding time and heating rate were considered as the experimental parameters in sludge pyrolysis. They were optimized by the proposed method, considering raw material cost, net energy consumption, carbon emission and adsorption capacity of sludge-derived bio-char (SB). Two operational modes (cyclic centralized and traditional distributed) were compared to identify a better solution for coking wastewater treatment. The results showed that the optimized operational conditions of coking sludge pyrolysis were that temperature of 550 °C, holding time of 60 min and heating rate of 20 °C/min, using the proposed method. Cyclic centralized mode has been demonstrated as the better mode for wastewater treatment by the proposed method, due to the higher comprehensive score of -0.296. It is a promising technology for sustainable wastewater treatment in terms of sludge recycling, energy saving and carbon emission reduction.


Subject(s)
Coke , Wastewater , Adsorption , Pyrolysis , Sewage
8.
Environ Sci Technol ; 47(24): 14450-8, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24228888

ABSTRACT

Ecologically based life cycle assessment (Eco-LCA) is an appealing approach for the evaluation of resources utilization and environmental impacts of the process industries from an ecological scale. However, the aggregated metrics of Eco-LCA suffer from some drawbacks: the environmental impact metric has limited applicability; the resource utilization metric ignores indirect consumption; the renewability metric fails to address the quantitative distinction of resources availability; the productivity metric seems self-contradictory. In this paper, the existing Eco-LCA metrics are revised and extended for sustainability assessment of the energy and chemical processes. A new Eco-LCA metrics system is proposed, including four independent dimensions: environmental impact, resource utilization, resource availability, and economic effectiveness. An illustrative example of comparing assessment between a gas boiler and a solar boiler process provides insight into the features of the proposed approach.


Subject(s)
Chemical Phenomena , Conservation of Natural Resources , Ecosystem , Energy-Generating Resources , Conservation of Natural Resources/economics , Energy-Generating Resources/economics , Gases/chemistry , Solar Energy
SELECTION OF CITATIONS
SEARCH DETAIL
...