Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Front Behav Neurosci ; 17: 1295969, 2023.
Article in English | MEDLINE | ID: mdl-38515786

ABSTRACT

Here, we propose a model of remote memory (BaconREM), which is an extension of a previously published Bayesian model of context fear learning (BACON) that accounts for many aspects of recently learned context fear. BaconREM simulates most known phenomenology of remote context fear as studied in rodents and makes new predictions. In particular, it predicts the well-known observation that fear that was conditioned to a recently encoded context becomes hippocampus-independent and shows much-enhanced generalization ("hyper-generalization") when systems consolidation occurs (i.e., when memory becomes remote). However, the model also predicts that there should be circumstances under which the generalizability of remote fear may not increase or even decrease. It also predicts the established finding that a "reminder" exposure to a feared context can abolish hyper-generalization while at the same time making remote fear again hippocampus-dependent. This observation has in the past been taken to suggest that reminders facilitate access to detail memory that remains permanently in the hippocampus even after systems consolidation is complete. However, the present model simulates this result even though it totally moves all the contextual memory that it retains to the neo-cortex when context fear becomes remote.

2.
Learn Mem ; 29(9): 283-296, 2022 09.
Article in English | MEDLINE | ID: mdl-36206390

ABSTRACT

There are sex differences in anxiety disorders with regard to occurrence and severity of episodes such that females tend to experience more frequent and more severe episodes. Contextual fear learning and generalization are especially relevant to anxiety disorders, which are often defined by expressing fear and/or anxiety in safe contexts. In contextual fear conditioning, a representation of the context must first be created, and then that representation must be paired with an aversive consequence. With some variation, the experiments presented here use a 3-d procedure in which day 1 consists of pre-exposure to the to-be-shocked context, day 2 consists of a single context-shock pairing after some placement-to-shock interval (PSI), and day 3 consists of testing in either the same or a novel context. With shorter pre-exposure periods, male rats showed more contextual fear, consistent with previous literature; however, after longer pre-exposure periods, female rats showed greater contextual fear. Additionally, while pre-exposure and PSI are both periods of time prior to the shock, it was found that they were not equivalent to each other. Animals with 120 sec of pre-exposure and a 30-sec PSI show a differential level and time course of fear expression than animals who received no pre-exposure and a 150-sec PSI, and this further depended on sex of the rat. Additionally, an experiment comparing recently versus remotely acquired contextual fear was run. Males were again shown to have greater contextual fear at both time points, and this contextual fear incubated/increased over time in males but not females. To facilitate identification of what processes caused sex differences, we used BaconX, a conceptual and computational model of hippocampal contextual learning. Computational simulations using this model predicted many of our key findings. Furthermore, these simulations suggest potential mechanisms with regard to hippocampal computation; namely, an increased feature sampling rate in males, which may account for the sex differences presented here and in prior literature.


Subject(s)
Fear , Sex Characteristics , Animals , Behavior, Animal , Female , Generalization, Psychological , Hippocampus , Male , Rats
3.
J Undergrad Neurosci Educ ; 20(2): A166-A177, 2022.
Article in English | MEDLINE | ID: mdl-38323045

ABSTRACT

FraidyRat is a teaching tool that allows students to investigate the neural basis of fear conditioning and extinction using a virtual rat with a virtual brain. FraidyRat models well-known phenomena at both a behavioral and neural level. Students use virtual versions of tract tracing, systemic and intracerebrally infused drugs, neural recording, and electrical stimulation to understand the neural substrates underlying the observed behavior. This module helps students develop critical thinking skills in order to deduce immediate cause and effect as well as inductive reasoning to grasp the broader scheme. This module utilizes scaffolded instruction and formative assessment to shape the thinking of students as they unfold and discover the neural mechanisms responsible for fear conditioning and extinction in FraidyRat, which largely reflect what is found in real rats. Experience with this three-week module resulted in students showing significant gains in content knowledge as well as a trend toward gains in critical thinking. An attitudinal questionnaire showed that students had an overall positive experience. This module can be replicated at any institution with just a computer. All materials are available at: https://mdcune.psych.ucla.edu/modules/fraidy-rat.

4.
Hippocampus ; 31(7): 790-814, 2021 07.
Article in English | MEDLINE | ID: mdl-33452843

ABSTRACT

The extinction of contextual fear is commonly an essential requirement for successful exposure therapy for fear disorders. However, experimental work on extinction of contextual fear is limited, and there little or no directly relevant theoretical work. Here, we extend BACON, a neurocomputational model of context fear conditioning that provides plausible explanations for a number of aspects of context fear conditioning, to deal with extinction (calling the model BaconX). In this model, contextual representations are formed in the hippocampus and association of fear to them occurs in the amygdala. Representation creation, conditionability, and development of between-session extinction are controlled by degree of confidence (assessed by the Bayesian weight of evidence) that an active contextual representation is in fact that of the current context (i.e., is "valid"). The model predicts that: (1) extinction which persists between sessions will occur only if at a sessions end there is high confidence that the active representation is valid. It follows that the shorter the context placement-to-US (shock) interval ("PSI") and the less is therefore learned about context, the longer extinction sessions must be for enduring extinction to occur, while too short PSIs will preclude successful extinction. (2) Short-PSI deficits can be rescued by contextual exposure even after conditioning has occurred. (3) Learning to discriminate well between a conditioned and similar safe context requires representations of each to form, which may not occur if PSI was too short. (4) Extinction-causing inhibition must be applied downstream of the conditioning locus for reasonable generalization properties to be generated. (5) Context change tends to cause return of extinguished contextual fear. (6). Extinction carried out in the conditioning context generalizes better than extinction executed in contexts to which fear has generalized (as done in exposure therapy). (7) BaconX suggests novel approaches to exposure therapy.


Subject(s)
Conditioning, Classical , Extinction, Psychological , Amygdala/physiology , Bayes Theorem , Conditioning, Classical/physiology , Extinction, Psychological/physiology , Fear/physiology , Hippocampus/physiology
5.
Prog Neurobiol ; 199: 101961, 2021 04.
Article in English | MEDLINE | ID: mdl-33242572

ABSTRACT

We propose that a major contribution of juvenile and adult hippocampal neurogenesis is to allow behavioral experience to sculpt dentate gyrus connectivity such that sensory attributes that are relevant to the animal's environment are more strongly represented. This "specialized" dentate is then able to store a larger number of discriminable memory representations. Our hypothesis builds on accumulating evidence that neurogenesis declines to low levels prior to adulthood in many species. Rather than being necessary for ongoing hippocampal function, as several current theories posit, we argue that neurogenesis has primarily a prospective function, in that it allows experience to shape hippocampal circuits and optimize them for future learning in the particular environment in which the animal lives. Using an anatomically-based simulation of the hippocampus (BACON), we demonstrate that environmental sculpting of this kind would reduce overlap among hippocampal memory representations and provide representation cells with more information about an animal's current situation; consequently, it would allow more memories to be stored and accurately recalled without significant interference. We describe several new, testable predictions generated by the sculpting hypothesis and evaluate the hypothesis with respect to existing evidence. We argue that the sculpting hypothesis provides a strong rationale for why juvenile and adult neurogenesis occurs specifically in the dentate gyrus and why it declines significantly prior to adulthood.


Subject(s)
Hippocampus , Neurogenesis , Aging , Animals , Learning , Prospective Studies
6.
Curr Biol ; 30(12): 2300-2311.e6, 2020 06 22.
Article in English | MEDLINE | ID: mdl-32442458

ABSTRACT

The context in which sudden fearful events occur can be poorly encoded into memory. Yet, the consequences of the resulting context-impoverished memories remain unknown. We demonstrate that restricting the time available for context encoding during contextual fear conditioning causes maladaptively overgeneralized and inextinguishable fear. However, post-conditioning context exposure enables further context encoding through hippocampal reconsolidation-dependent memory updating. Updating in the conditioning context alleviates overgeneralization and restores capacity for extinction. However, updating in a similar safe context erroneously shifts fear from the dangerous to the safe context. We argue that these phenomena can be explained by uncertainty about where events occurred. Moreover, we show that a hippocampal-neocortical neurocomputational model based on this assumption successfully simulates and explains our observations. These findings reveal that context-impoverished memories are maladaptive and can be improved or distorted after recall, with implications for basic memory theory, memory distortion, and treatment of disorders like post-traumatic stress disorder.


Subject(s)
Extinction, Psychological/physiology , Mental Recall/physiology , Animals , Male , Mice , Mice, Inbred C57BL
7.
J Neurosci ; 37(26): 6359-6371, 2017 06 28.
Article in English | MEDLINE | ID: mdl-28546308

ABSTRACT

Dentate gyrus (DG) is widely thought to provide a teaching signal that enables hippocampal encoding of memories, but its role during retrieval is poorly understood. Some data and models suggest that DG plays no role in retrieval; others encourage the opposite conclusion. To resolve this controversy, we evaluated the effects of optogenetic inhibition of dorsal DG during context fear conditioning, recall, generalization, and extinction in male mice. We found that (1) inhibition during training impaired context fear acquisition; (2) inhibition during recall did not impair fear expression in the training context, unless mice had to distinguish between similar feared and neutral contexts; (3) inhibition increased generalization of fear to an unfamiliar context that was similar to a feared one and impaired fear expression in the conditioned context when it was similar to a neutral one; and (4) inhibition impaired fear extinction. These effects, as well as several seemingly contradictory published findings, could be reproduced by BACON (Bayesian Context Fear Algorithm), a physiologically realistic hippocampal model positing that acquisition and retrieval both involve coordinated activity in DG and CA3. Our findings thus suggest that DG contributes to retrieval and extinction, as well as to the initial establishment of context fear.SIGNIFICANCE STATEMENT Despite abundant evidence that the hippocampal dentate gyrus (DG) plays a critical role in memory, it remains unclear whether the role of DG relates to memory acquisition or retrieval. Using contextual fear conditioning and optogenetic inhibition, we show that DG contributes to both of these processes. Using computational simulations, we identify specific mechanisms through which the suppression of DG affects memory performance. Finally, we show that DG contributes to fear extinction learning, a process in which learned fear is attenuated through exposures to a fearful context in the absence of threat. Our data resolve a long-standing question about the role of DG in memory and provide insight into how disorders affecting DG, including aging, stress, and depression, influence cognitive processes.


Subject(s)
Association Learning/physiology , Conditioning, Classical/physiology , Dentate Gyrus/physiology , Extinction, Psychological/physiology , Fear/physiology , Mental Recall/physiology , Animals , Male , Mice , Mice, Inbred C57BL , Neural Inhibition/physiology
8.
Front Behav Neurosci ; 9: 112, 2015.
Article in English | MEDLINE | ID: mdl-26074792

ABSTRACT

Contextual fear conditioning is thought to involve the synaptic plasticity-dependent establishment in hippocampus of representations of to-be-conditioned contexts which can then become associated with USs in the amygdala. A conceptual and computational model of this process is proposed in which contextual attributes are assumed to be sampled serially and randomly during contextual exposures. Given this assumption, moment-to-moment information about such attributes will often be quite different from one exposure to another and, in particular, between exposures during which representations are created, exposures during which conditioning occurs, and during recall sessions. This presents challenges to current conceptual models of hippocampal function. In order to meet these challenges, our model's hippocampus was made to operate in different modes during representation creation and recall, and non-hippocampal machinery was constructed that controlled these hippocampal modes. This machinery uses a comparison between contextual information currently observed and information associated with existing hippocampal representations of familiar contexts to compute the Bayesian Weight of Evidence that the current context is (or is not) a known one, and it uses this value to assess the appropriateness of creation or recall modes. The model predicts a number of known phenomena such as the immediate shock deficit, spurious fear conditioning to contexts that are absent but similar to actually present ones, and modulation of conditioning by pre-familiarization with contexts. It also predicts a number of as yet unknown phenomena.

9.
Proc Biol Sci ; 281(1790)2014 Sep 07.
Article in English | MEDLINE | ID: mdl-25056616

ABSTRACT

Considerable evidence seems to show that emotional and reflex reactions to feared situations are mediated by the amygdala. It might therefore seem plausible to expect that amygdala-coded fear should also influence decisions when animals make choices about instrumental actions. However, there is not good evidence of this. In particular, it appears, though the literature is conflicted, that once learning is complete, the amygdala may often not be involved in instrumental avoidance behaviours. It is therefore of interest that we have found in rats living for extended periods in a semi-naturalistic 'closed economy', where they were given random shocks in regions that had to be entered to obtain food, choices about feeding behaviour were in fact influenced by amygdala-coded fear, in spite of the null effect of amygdalar lesions on fear of dangerous location per se. We suggest that avoidance of highly motivated voluntary behaviour does depend in part on fear signals originating in the amygdala. Such signalling may be one role of well-known projections from amygdala to cortico-striate circuitry.


Subject(s)
Amygdala/physiology , Conditioning, Psychological/physiology , Feeding Behavior/physiology , Learning/physiology , Animals , Appetitive Behavior/physiology , Electroshock , Fear/physiology , Hunger , Male , Motivation , Rats , Rats, Long-Evans
10.
Front Behav Neurosci ; 5: 41, 2011.
Article in English | MEDLINE | ID: mdl-21845175

ABSTRACT

A neurally oriented conceptual and computational model of fear conditioning manifested by freezing behavior (FRAT), which accounts for many aspects of delay and context conditioning, has been constructed. Conditioning and extinction are the result of neuromodulation-controlled LTP at synapses of thalamic, cortical, and hippocampal afferents on principal cells and inhibitory interneurons of lateral and basal amygdala. The phenomena accounted for by the model (and simulated by the computational version) include conditioning, secondary reinforcement, blocking, the immediate shock deficit, extinction, renewal, and a range of empirically valid effects of pre- and post-training ablation or inactivation of hippocampus or amygdala nuclei.

11.
J Neurophysiol ; 100(2): 1113-26, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18562553

ABSTRACT

Serotonin can produce multiple, contradictory modulatory effects on strength of synaptic transmission in both vertebrate and invertebrate nerve circuits. In crayfish, serotonin (5-HT) can both facilitate and depress transmission to lateral giant escape command neurons; however, which effect is manifest during application, as well as the sign and duration of effects that may continue long after 5-HT washout, may depend on history of application as well as on concentration. We report that protein kinase A (PKA) signaling is essential to the production of facilitation but depression is mediated by non-cAMP/PKA signaling pathways. However, we unexpectedly found that PKA activity is essential for the decay of depression when serotonin is washed out. This, and evidence from the effects of a variety of serotonin application regimens, suggest that facilitatory and depressive states coexist and compete and that the decay of each is dependent on stimulation by the other. A computational model that incorporates these assumptions can account for and rationalize the varied effects of a wide range of serotonin application regimens.


Subject(s)
Excitatory Postsynaptic Potentials/drug effects , Neural Inhibition/drug effects , Serotonin/pharmacology , Synapses/drug effects , Synaptic Transmission/drug effects , 8-Bromo Cyclic Adenosine Monophosphate/pharmacology , Animals , Astacoidea , Dose-Response Relationship, Drug , Excitatory Postsynaptic Potentials/physiology , Ganglia, Invertebrate/cytology , Ganglia, Invertebrate/physiology , In Vitro Techniques , Isoquinolines/pharmacology , Models, Biological , Neural Inhibition/physiology , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology , Sulfonamides/pharmacology , Synapses/physiology
12.
J Undergrad Neurosci Educ ; 7(1): A1-8, 2008.
Article in English | MEDLINE | ID: mdl-23492869

ABSTRACT

To circumvent the many problems in teaching neurophysiology as a "wet lab," we developed SWIMMY, a virtual fish that swims by moving its virtual tail by means of a virtual neural circuit. SWIMMY diminishes the need for expensive equipment, troubleshooting, and manual skills that require practice. Also, SWIMMY effectively replaces live preparations, which some students find objectionable. Using SWIMMY, students (1) review the basics of neurophysiology, (2) identify the neurons in the circuit, (3) ascertain the neurons' synaptic interconnections, (4) discover which cells generate the motor pattern of swimming, (5) discover how the rhythm is generated, and finally (6) use an animation that corresponds to the activity of the motoneurons to discover the behavioral effects produced by various lesions and explain them in terms of their neural underpinnings. SWIMMY is a genuine inquiry-based exercise producing data that requires individual thought and interpretation. It is neither a cookbook exercise nor a demonstration. We have used SWIMMY for several terms with great success. SWIMMY solidifies students' understanding of material learned in traditional lecture courses because they must apply the concepts. Student ratings of SWIMMY have been very positive, particularly ratings from students who have also been exposed to a "wet" neurophysiology lab. Because SWIMMY requires only computers for implementation and makes minimal demands on instructional resources, it provides for a great deal of flexibility. Instructors could use SWIMMY as part of a traditional lab course, as a classroom exercise, in distance learning, or in blended instructional formats (internet with classroom). SWIMMY is now available for free online complete with student and instructor manuals at http://mdcune.psych.ucla.edu.

13.
J Neurophysiol ; 95(4): 2721-4, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16381808

ABSTRACT

It is widely assumed that learning results from alterations in the strength of synapses within the neural pathways that mediate a learned behavioral response and that these alterations are directly caused by training-induced activity of neurons connected by the changing synapses. Initial evidence for this view came from studies of habituation of defensive reflexes in several invertebrate species. However, more recent studies of habituation of the escape reflex in one of these species, the crayfish, have shown that habituation is substantially caused by tonic inhibitory input from cephalic ganglia; this descending inhibition suppresses the activity of neurons within the escape circuit, which reside in caudal ganglia. Such control by descending inhibition indicates that animals with encephalized nervous systems do not entirely abdicate to low-level circuitry the important decision of whether to habituate to stimuli that might warn of danger. Higher centers in fact play a major role in controlling the habituation of this potentially life-saving protective response. Another way for higher centers to control lower ones would be to induce alteration of the lower center's intrinsic properties. Here, we show that, whereas descending input from higher ganglia is needed to induce habituation, once established, habituation persists even after rostral ganglia are disconnected. This provides evidence that lower-level neural circuits can be reprogrammed through transient interaction with higher ganglia to decrease their intrinsic tendency to produce escape.


Subject(s)
Astacoidea/physiology , Behavior, Animal/physiology , Escape Reaction/physiology , Ganglia, Invertebrate/physiology , Neural Pathways/physiology , Animals , Interneurons/physiology , Neural Inhibition/physiology , Synapses/physiology , Synaptic Transmission/physiology
14.
Integr Comp Biol ; 42(4): 705-15, 2002 Aug.
Article in English | MEDLINE | ID: mdl-21708767

ABSTRACT

We review here factors that control the excitability of the giant neuron-mediated tail-flip escape behavior in crayfish, focusing especially on recent findings concerning serotonergic modulation. Serotonin can either facilitate or inhibit escape depending on concentration and pattern of application. Low concentrations facilitate while high ones inhibit; however, if high concentrations arise gradually they facilitate instead of inhibiting. The effects of serotonin can also be altered by social experience, with application regimens that cause facilitation in social isolates coming to produce inhibition after an extended period of living as a subordinate. Attempts to understand both the possible physiological basis of some of these complexities and their possible function are discussed. Neuroethological investigations indicate that giant neuron-mediated escape is inhibited during the initial fights that establish social relationships and is facilitated in their immediate aftermath. Once the relationship of a pair is well-established, the presence of the dominant tends to suppress giant neuron-mediated escape (but not tail-flip escape mediated by non-giant circuitry) in the subordinate, but the presence of the subordinate has relatively little effect on the dominant. These patterns of modulation can be seen as consistent with the known variations in serotonin's effect as a function of concentration and social experience and may provide a biological reason for these variations.

15.
Brain Behav Evol ; 60(6): 360-9, 2002.
Article in English | MEDLINE | ID: mdl-12563168

ABSTRACT

Neuromodulation provides a means of changing the excitability of neurons or the effect of synapses, and so extends the performance range of neural circuits. Metamodulation occurs when the neuromodulatory effect is itself modulated, often in response to a change in the behavioral state of the animal. The well-studied neural circuit that mediates escape in the crayfish is modulated by serotonin, and this modulation is subject to two forms of metamodulation. First, the serotonergic modulation of the Lateral Giant (LG) command neuron for escape depends on the pattern of exposure of the cell to serotonin. High and low concentrations, and rapid and slow exposures each produce opposite modulatory effects on sensory-evoked EPSPs in LG. In addition, brief exposures produce transient modulatory effects, whereas longer exposures produce long-term facilitation. These different patterns of exposure may result from serotonin neurotransmission, paracrine transmission, and hormonal release, all of which occur in the vicinity of LG. The second form of metamodulation enables serotonergic modulation to track slow changes in the social status of the crayfish. Slowly applied serotonin facilitates LG's response in socially isolated crayfish and in new dominant and subordinate animals. Facilitation is retained in the dominant animal during two weeks of continuous pairing of the animals, but facilitation gradually changes to inhibition in the subordinate crayfish. These and related changes in serotonin modulation appear to result from changes in the population of serotonin receptors that mediate the modulatory effects in LG. Whereas the exposure-dependent metamodulation enables rapid changes in serotonergic modulation of LG to occur, the status-dependent metamodulation enables serotonergic modulation of LG to track the slow maturation of social relationships.


Subject(s)
Astacoidea/physiology , Escape Reaction/physiology , Nerve Net/physiology , Neurotransmitter Agents/physiology , Serotonin/physiology , Animals , Arousal/physiology , Astacoidea/anatomy & histology , Dominance-Subordination , Evoked Potentials, Somatosensory/physiology , Ganglia, Invertebrate/anatomy & histology , Ganglia, Invertebrate/physiology , Invertebrate Hormones/physiology , Long-Term Potentiation/physiology , Nerve Net/anatomy & histology , Neural Inhibition/physiology , Neurons/diagnostic imaging , Neurons/physiology , Paracrine Communication/physiology , Social Environment , Synaptic Transmission/physiology , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL
...