Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
1.
J Exp Med ; 221(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38597954

ABSTRACT

Early stages of deadly respiratory diseases including COVID-19 are challenging to elucidate in humans. Here, we define cellular tropism and transcriptomic effects of SARS-CoV-2 virus by productively infecting healthy human lung tissue and using scRNA-seq to reconstruct the transcriptional program in "infection pseudotime" for individual lung cell types. SARS-CoV-2 predominantly infected activated interstitial macrophages (IMs), which can accumulate thousands of viral RNA molecules, taking over 60% of the cell transcriptome and forming dense viral RNA bodies while inducing host profibrotic (TGFB1, SPP1) and inflammatory (early interferon response, CCL2/7/8/13, CXCL10, and IL6/10) programs and destroying host cell architecture. Infected alveolar macrophages (AMs) showed none of these extreme responses. Spike-dependent viral entry into AMs used ACE2 and Sialoadhesin/CD169, whereas IM entry used DC-SIGN/CD209. These results identify activated IMs as a prominent site of viral takeover, the focus of inflammation and fibrosis, and suggest targeting CD209 to prevent early pathology in COVID-19 pneumonia. This approach can be generalized to any human lung infection and to evaluate therapeutics.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Macrophages , Inflammation , RNA, Viral , Lung
2.
Nat Commun ; 15(1): 2188, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38467625

ABSTRACT

Hormones mediate long-range cell communication and play vital roles in physiology, metabolism, and health. Traditionally, endocrinologists have focused on one hormone or organ system at a time. Yet, hormone signaling by its very nature connects cells of different organs and involves crosstalk of different hormones. Here, we leverage the organism-wide single cell transcriptional atlas of a non-human primate, the mouse lemur (Microcebus murinus), to systematically map source and target cells for 84 classes of hormones. This work uncovers previously-uncharacterized sites of hormone regulation, and shows that the hormonal signaling network is densely connected, decentralized, and rich in feedback loops. Evolutionary comparisons of hormonal genes and their expression patterns show that mouse lemur better models human hormonal signaling than mouse, at both the genomic and transcriptomic levels, and reveal primate-specific rewiring of hormone-producing/target cells. This work complements the scale and resolution of classical endocrine studies and sheds light on primate hormone regulation.


Subject(s)
Cheirogaleidae , Animals , Cheirogaleidae/genetics , Cheirogaleidae/metabolism , Transcriptome/genetics , Biological Evolution , Hormones/metabolism
3.
Curr Biol ; 33(24): 5439-5455.e7, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38056461

ABSTRACT

Neuropeptide S (NPS) is a highly conserved peptide found in all tetrapods that functions in the brain to promote heightened arousal; however, the subpopulations mediating these phenomena remain unknown. We generated mice expressing Cre recombinase from the Nps gene locus (NpsCre) and examined populations of NPS+ neurons in the lateral parabrachial area (LPBA), the peri-locus coeruleus (peri-LC) region of the pons, and the dorsomedial thalamus (DMT). We performed brain-wide mapping of input and output regions of NPS+ clusters and characterized expression patterns of the NPS receptor 1 (NPSR1). While the activity of all three NPS+ subpopulations tracked with vigilance state, only NPS+ neurons of the LPBA exhibited both increased activity prior to wakefulness and decreased activity during REM sleep, similar to the behavioral phenotype observed upon NPSR1 activation. Accordingly, we found that activation of the LPBA but not the peri-LC NPS+ neurons increased wake and reduced REM sleep. Furthermore, given the extended role of the LPBA in respiration and the link between behavioral arousal and breathing rate, we demonstrated that the LPBA but not the peri-LC NPS+ neuronal activation increased respiratory rate. Together, our data suggest that NPS+ neurons of the LPBA represent an unexplored subpopulation regulating breathing, and they are sufficient to recapitulate the sleep/wake phenotypes observed with broad NPS system activation.


Subject(s)
Neuropeptides , Mice , Animals , Neuropeptides/genetics , Neuropeptides/metabolism , Arousal/physiology , Brain/physiology , Wakefulness/physiology , Sleep/physiology , Neurons/physiology , Respiration
4.
Nat Neurosci ; 26(12): 2122-2130, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37996531

ABSTRACT

Mammalian vocalizations are critical for communication and are produced through the process of phonation, in which expiratory muscles force air through the tensed vocal folds of the larynx, which vibrate to produce sound. Despite the importance of phonation, the motor circuits in the brain that control it remain poorly understood. In this study, we identified a subpopulation of ~160 neuropeptide precursor Nts (neurotensin)-expressing neurons in the mouse brainstem nucleus retroambiguus (RAm) that are robustly activated during both neonatal isolation cries and adult social vocalizations. The activity of these neurons is necessary and sufficient for vocalization and bidirectionally controls sound volume. RAm Nts neurons project to all brainstem and spinal cord motor centers involved in phonation and activate laryngeal and expiratory muscles essential for phonation and volume control. Thus, RAm Nts neurons form the core of a brain circuit for making sound and controlling its volume, which are two foundations of vocal communication.


Subject(s)
Larynx , Vocalization, Animal , Animals , Male , Sheep , Mice , Vocalization, Animal/physiology , Larynx/physiology , Neurons , Brain Stem , Phonation/physiology , Mammals
5.
bioRxiv ; 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36711554

ABSTRACT

Neural activity is increasingly recognized as a critical regulator of cancer growth. In the brain, neuronal activity robustly influences glioma growth both through paracrine mechanisms and through electrochemical integration of malignant cells into neural circuitry via neuron-to-glioma synapses, while perisynaptic neurotransmitter signaling drives breast cancer brain metastasis growth. Outside of the CNS, innervation of tumors such as prostate, breast, pancreatic and gastrointestinal cancers by peripheral nerves similarly regulates cancer progression. However, the extent to which the nervous system regulates lung cancer progression, either in the lung or when metastatic to brain, is largely unexplored. Small cell lung cancer (SCLC) is a lethal high-grade neuroendocrine tumor that exhibits a strong propensity to metastasize to the brain. Here we demonstrate that, similar to glioma, metastatic SCLC cells in the brain co-opt neuronal activity-regulated mechanisms to stimulate growth and progression. Optogenetic stimulation of cortical neuronal activity drives proliferation and invasion of SCLC brain metastases. In the brain, SCLC cells exhibit electrical currents and consequent calcium transients in response to neuronal activity, and direct SCLC cell membrane depolarization is sufficient to promote the growth of SCLC tumors. In the lung, vagus nerve transection markedly inhibits primary lung tumor formation, progression and metastasis, highlighting a critical role for innervation in overall SCLC initiation and progression. Taken together, these studies illustrate that neuronal activity plays a crucial role in dictating SCLC pathogenesis in both primary and metastatic sites.

6.
Elife ; 112022 12 05.
Article in English | MEDLINE | ID: mdl-36469459

ABSTRACT

Pulmonary neuroendocrine cells (PNECs) are sensory epithelial cells that transmit airway status to the brain via sensory neurons and locally via calcitonin gene-related peptide (CGRP) and γ- aminobutyric acid (GABA). Several other neuropeptides and neurotransmitters have been detected in various species, but the number, targets, functions, and conservation of PNEC signals are largely unknown. We used scRNAseq to profile hundreds of the rare mouse and human PNECs. This revealed over 40 PNEC neuropeptide and peptide hormone genes, most cells expressing unique combinations of 5-18 genes. Peptides are packaged in separate vesicles, their release presumably regulated by the distinct, multimodal combinations of sensors we show are expressed by each PNEC. Expression of the peptide receptors predicts an array of local cell targets, and we show the new PNEC signal angiotensin directly activates one subtype of innervating sensory neuron. Many signals lack lung targets so may have endocrine activity like those of PNEC-derived carcinoid tumors. PNECs are an extraordinarily rich and diverse signaling hub rivaling the enteroendocrine system.


Subject(s)
Lung , Neuroendocrine Cells , Neuropeptides , Animals , Humans , Mice , Epithelial Cells/metabolism , Lung/pathology , Neuroendocrine Cells/metabolism , Neuropeptides/metabolism , Sequence Analysis, RNA
7.
Nat Commun ; 13(1): 7137, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36414616

ABSTRACT

The lung's gas exchange surface is comprised of alveolar AT1 and AT2 cells that are corrupted in several common and deadly diseases. They arise from a bipotent progenitor whose differentiation is thought to be dictated by differential mechanical forces. Here we show the critical determinant is FGF signaling. Fgfr2 is expressed in the developing progenitors in mouse then restricts to nascent AT2 cells and remains on throughout life. Its ligands are expressed in surrounding mesenchyme and can, in the absence of exogenous mechanical cues, induce progenitors to form alveolospheres with intermingled AT2 and AT1 cells. FGF signaling directly and cell autonomously specifies AT2 fate; progenitors lacking Fgfr2 in vitro and in vivo exclusively acquire AT1 fate. Fgfr2 loss in AT2 cells perinatally results in reprogramming to AT1 identity, whereas loss or inhibition later in life triggers AT2 apoptosis and compensatory regeneration. We propose that Fgfr2 signaling selects AT2 fate during development, induces a cell non-autonomous AT1 differentiation signal, then continuously maintains AT2 identity and survival throughout life.


Subject(s)
Alveolar Epithelial Cells , Mesoderm , Animals , Mice , Cell Differentiation , Signal Transduction , Apoptosis
8.
Nature ; 606(7915): 739-746, 2022 06.
Article in English | MEDLINE | ID: mdl-35650438

ABSTRACT

The sympathetic and parasympathetic nervous systems regulate the activities of internal organs1, but the molecular and functional diversity of their constituent neurons and circuits remains largely unknown. Here we use retrograde neuronal tracing, single-cell RNA sequencing, optogenetics and physiological experiments to dissect the cardiac parasympathetic control circuit in mice. We show that cardiac-innervating neurons in the brainstem nucleus ambiguus (Amb) are comprised of two molecularly, anatomically and functionally distinct subtypes. The first, which we call ambiguus cardiovascular (ACV) neurons (approximately 35 neurons per Amb), define the classical cardiac parasympathetic circuit. They selectively innervate a subset of cardiac parasympathetic ganglion neurons and mediate the baroreceptor reflex, slowing heart rate and atrioventricular node conduction in response to increased blood pressure. The other, ambiguus cardiopulmonary (ACP) neurons (approximately 15 neurons per Amb) innervate cardiac ganglion neurons intermingled with and functionally indistinguishable from those innervated by ACV neurons. ACP neurons also innervate most or all lung parasympathetic ganglion neurons-clonal labelling shows that individual ACP neurons innervate both organs. ACP neurons mediate the dive reflex, the simultaneous bradycardia and bronchoconstriction that follows water immersion. Thus, parasympathetic control of the heart is organized into two parallel circuits, one that selectively controls cardiac function (ACV circuit) and another that coordinates cardiac and pulmonary function (ACP circuit). This new understanding of cardiac control has implications for treating cardiac and pulmonary diseases and for elucidating the control and coordination circuits of other organs.


Subject(s)
Cardiovascular System , Heart , Lung , Neural Pathways , Parasympathetic Nervous System , Animals , Heart/physiology , Lung/physiology , Medulla Oblongata/cytology , Medulla Oblongata/physiology , Mice , Neuroanatomical Tract-Tracing Techniques , Optogenetics , Parasympathetic Nervous System/cytology , Parasympathetic Nervous System/physiology , RNA-Seq , Single-Cell Analysis
9.
Science ; 376(6594): eabl4896, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35549404

ABSTRACT

Molecular characterization of cell types using single-cell transcriptome sequencing is revolutionizing cell biology and enabling new insights into the physiology of human organs. We created a human reference atlas comprising nearly 500,000 cells from 24 different tissues and organs, many from the same donor. This atlas enabled molecular characterization of more than 400 cell types, their distribution across tissues, and tissue-specific variation in gene expression. Using multiple tissues from a single donor enabled identification of the clonal distribution of T cells between tissues, identification of the tissue-specific mutation rate in B cells, and analysis of the cell cycle state and proliferative potential of shared cell types across tissues. Cell type-specific RNA splicing was discovered and analyzed across tissues within an individual.


Subject(s)
Atlases as Topic , Cells , Organ Specificity , RNA Splicing , Single-Cell Analysis , Transcriptome , B-Lymphocytes/metabolism , Cells/metabolism , Humans , Organ Specificity/genetics , T-Lymphocytes/metabolism
10.
Arthritis Rheumatol ; 74(7): 1271-1283, 2022 07.
Article in English | MEDLINE | ID: mdl-35189047

ABSTRACT

OBJECTIVE: Recent observations in systemic juvenile idiopathic arthritis (JIA) suggest an increasing incidence of high-mortality interstitial lung disease often characterized by a variant of pulmonary alveolar proteinosis (PAP). Co-occurrence of macrophage activation syndrome (MAS) and PAP in systemic JIA suggests a shared pathology, but patients with lung disease associated with systemic JIA (designated SJIA-LD) also commonly experience features of drug reaction such as atypical rashes and eosinophilia. This study was undertaken to investigate immunopathology and identify biomarkers in systemic JIA, MAS, and SJIA-LD. METHODS: We used SOMAscan to measure ~1,300 analytes in sera from healthy controls and patients with systemic JIA, MAS, SJIA-LD, or other related diseases. We verified selected findings by enzyme-linked immunosorbent assay and lung immunostaining. Because the proteome of a sample may reflect multiple states (systemic JIA, MAS, or SJIA-LD), we used regression modeling to identify subsets of altered proteins associated with each state. We tested key findings in a validation cohort. RESULTS: Proteome alterations in active systemic JIA and MAS overlapped substantially, including known systemic JIA biomarkers such as serum amyloid A and S100A9, and novel elevations in the levels of heat-shock proteins and glycolytic enzymes. Interleukin-18 levels were elevated in all systemic JIA groups, particularly MAS and SJIA-LD. We also identified an MAS-independent SJIA-LD signature notable for elevated levels of intercellular adhesion molecule 5 (ICAM-5), matrix metalloproteinase 7 (MMP-7), and allergic/eosinophilic chemokines, which have been previously associated with lung damage. Immunohistochemistry localized ICAM-5 and MMP-7 in the lungs of patients with SJIA-LD. The ability of ICAM-5 to distinguish SJIA-LD from systemic JIA/MAS was independently validated. CONCLUSION: Serum proteins support a systemic JIA-to-MAS continuum; help distinguish systemic JIA, systemic JIA/MAS, and SJIA-LD; and suggest etiologic hypotheses. Select biomarkers, such as ICAM-5, could aid in early detection and management of SJIA-LD.


Subject(s)
Arthritis, Juvenile , Lung Diseases , Macrophage Activation Syndrome , Arthritis, Juvenile/complications , Biomarkers , Humans , Lung Diseases/epidemiology , Matrix Metalloproteinase 7 , Proteome
11.
Elife ; 102021 09 13.
Article in English | MEDLINE | ID: mdl-34515025

ABSTRACT

The extent splicing is regulated at single-cell resolution has remained controversial due to both available data and methods to interpret it. We apply the SpliZ, a new statistical approach, to detect cell-type-specific splicing in >110K cells from 12 human tissues. Using 10X Chromium data for discovery, 9.1% of genes with computable SpliZ scores are cell-type-specifically spliced, including ubiquitously expressed genes MYL6 and RPS24. These results are validated with RNA FISH, single-cell PCR, and Smart-seq2. SpliZ analysis reveals 170 genes with regulated splicing during human spermatogenesis, including examples conserved in mouse and mouse lemur. The SpliZ allows model-based identification of subpopulations indistinguishable based on gene expression, illustrated by subpopulation-specific splicing of classical monocytes involving an ultraconserved exon in SAT1. Together, this analysis of differential splicing across multiple organs establishes that splicing is regulated cell-type-specifically.


Subject(s)
Cheirogaleidae/genetics , Mice/genetics , RNA Splicing , Single-Cell Analysis , Animals
12.
Front Public Health ; 9: 654299, 2021.
Article in English | MEDLINE | ID: mdl-34368043

ABSTRACT

There are many outstanding questions about how to control the global COVID-19 pandemic. The information void has been especially stark in the World Health Organization Africa Region, which has low per capita reported cases, low testing rates, low access to therapeutic drugs, and has the longest wait for vaccines. As with all disease, the central challenge in responding to COVID-19 is that it requires integrating complex health systems that incorporate prevention, testing, front line health care, and reliable data to inform policies and their implementation within a relevant timeframe. It requires that the population can rely on the health system, and decision-makers can rely on the data. To understand the process and challenges of such an integrated response in an under-resourced rural African setting, we present the COVID-19 strategy in Ifanadiana District, where a partnership between Malagasy Ministry of Public Health (MoPH) and non-governmental organizations integrates prevention, diagnosis, surveillance, and treatment, in the context of a model health system. These efforts touch every level of the health system in the district-community, primary care centers, hospital-including the establishment of the only RT-PCR lab for SARS-CoV-2 testing outside of the capital. Starting in March of 2021, a second wave of COVID-19 occurred in Madagascar, but there remain fewer cases in Ifanadiana than for many other diseases (e.g., malaria). At the Ifanadiana District Hospital, there have been two deaths that are officially attributed to COVID-19. Here, we describe the main components and challenges of this integrated response, the broad epidemiological contours of the epidemic, and how complex data sources can be developed to address many questions of COVID-19 science. Because of data limitations, it still remains unclear how this epidemic will affect rural areas of Madagascar and other developing countries where health system utilization is relatively low and there is limited capacity to diagnose and treat COVID-19 patients. Widespread population based seroprevalence studies are being implemented in Ifanadiana to inform the COVID-19 response strategy as health systems must simultaneously manage perennial and endemic disease threats.


Subject(s)
COVID-19 , COVID-19 Testing , Humans , Madagascar/epidemiology , Pandemics , SARS-CoV-2 , Seroepidemiologic Studies
13.
Comp Med ; 71(3): 256-266, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34082858

ABSTRACT

The gray mouse lemur (Microcebus murinus, GML) is a nocturnal, arboreal, prosimian primate that is native to Madagascar. Captive breeding colonies of GMLs have been established primarily for noninvasive studies on questions related to circadian rhythms and metabolism. GMLs are increasingly considered to be a strong translational model for neurocognitive aging due to overlapping histopathologic features shared with aged humans. However, little information is available describing the clinical presentations, naturally occurring diseases, and histopathology of aged GMLs. In our colony, a 9 y-old, male, GML was euthanized after sudden onset of weakness, lethargy, and tibial fracture. Evaluation of this animal revealed widespread fibrous osteodystrophy (FOD) of the mandible, maxilla, cranium, appendicular, and vertebral bones. FOD and systemic metastatic mineralization were attributed to underlying chronic renal disease. Findings in this GML prompted periodic colony-wide serum biochemical screenings for azotemia and electrolyte abnormalities. Subsequently, 3 additional GMLs (2 females and 1 male) were euthanized due to varying clinical and serum biochemical presentations. Common to all 4 animals were FOD, chronic renal disease, uterine adenocarcinoma (females only), cataracts, and osteoarthritis. This case study highlights the concurrent clinical and histopathologic abnormalities that are relevant to use of GMLs in the expanding field of aging research.


Subject(s)
Adenocarcinoma , Cheirogaleidae , Renal Insufficiency, Chronic , Adenocarcinoma/veterinary , Aging , Animals , Circadian Rhythm , Female , Male , Mice
14.
Nature ; 587(7835): 619-625, 2020 11.
Article in English | MEDLINE | ID: mdl-33208946

ABSTRACT

Although single-cell RNA sequencing studies have begun to provide compendia of cell expression profiles1-9, it has been difficult to systematically identify and localize all molecular cell types in individual organs to create a full molecular cell atlas. Here, using droplet- and plate-based single-cell RNA sequencing of approximately 75,000 human cells across all lung tissue compartments and circulating blood, combined with a multi-pronged cell annotation approach, we create an extensive cell atlas of the human lung. We define the gene expression profiles and anatomical locations of 58 cell populations in the human lung, including 41 out of 45 previously known cell types and 14 previously unknown ones. This comprehensive molecular atlas identifies the biochemical functions of lung cells and the transcription factors and markers for making and monitoring them; defines the cell targets of circulating hormones and predicts local signalling interactions and immune cell homing; and identifies cell types that are directly affected by lung disease genes and respiratory viruses. By comparing human and mouse data, we identified 17 molecular cell types that have been gained or lost during lung evolution and others with substantially altered expression profiles, revealing extensive plasticity of cell types and cell-type-specific gene expression during organ evolution including expression switches between cell types. This atlas provides the molecular foundation for investigating how lung cell identities, functions and interactions are achieved in development and tissue engineering and altered in disease and evolution.


Subject(s)
Cells/classification , Cells/metabolism , Immunity , Lung/cytology , Sequence Analysis, RNA , Single-Cell Analysis , Transcriptome/genetics , Aged , Animals , Atlases as Topic , Biomarkers , Cell Communication , Cells/immunology , Chemokines/metabolism , Endothelial Cells/metabolism , Epithelial Cells/metabolism , Female , Humans , Lung/immunology , Male , Mice , Middle Aged , Receptors, Lymphocyte Homing/metabolism , Signal Transduction , Stromal Cells/metabolism
15.
Nature ; 586(7831): 785-789, 2020 10.
Article in English | MEDLINE | ID: mdl-33057196

ABSTRACT

In the mammalian lung, an apparently homogenous mesh of capillary vessels surrounds each alveolus, forming the vast respiratory surface across which oxygen transfers to the blood1. Here we use single-cell analysis to elucidate the cell types, development, renewal and evolution of the alveolar capillary endothelium. We show that alveolar capillaries are mosaics; similar to the epithelium that lines the alveolus, the alveolar endothelium is made up of two intermingled cell types, with complex 'Swiss-cheese'-like morphologies and distinct functions. The first cell type, which we term the 'aerocyte', is specialized for gas exchange and the trafficking of leukocytes, and is unique to the lung. The other cell type, termed gCap ('general' capillary), is specialized to regulate vasomotor tone, and functions as a stem/progenitor cell in capillary homeostasis and repair. The two cell types develop from bipotent progenitors, mature gradually and are affected differently in disease and during ageing. This cell-type specialization is conserved between mouse and human lungs but is not found in alligator or turtle lungs, suggesting it arose during the evolution of the mammalian lung. The discovery of cell type specialization in alveolar capillaries transforms our understanding of the structure, function, regulation and maintenance of the air-blood barrier and gas exchange in health, disease and evolution.


Subject(s)
Capillaries/cytology , Pulmonary Alveoli/blood supply , Pulmonary Alveoli/cytology , Pulmonary Gas Exchange , Aging , Alligators and Crocodiles/anatomy & histology , Animals , Biological Evolution , Capillaries/metabolism , Cell Division , Cell Self Renewal , Cellular Senescence , Humans , Male , Mice , Pulmonary Alveoli/metabolism , Stem Cells/classification , Stem Cells/cytology , Turtles/anatomy & histology
16.
Cell Rep ; 31(11): 107779, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32553161

ABSTRACT

Emotions are distinct patterns of behavioral and physiological responses triggered by stimuli that induce different brain states. Elucidating the circuits is difficult because of challenges in interrogating emotional brain states and their complex outputs. Here, we leverage the recent discovery in mice of a neural circuit for sighing, a simple, quantifiable output of various emotions. We show that mouse confinement triggers sighing, and this "claustrophobic" sighing, but not accompanying tachypnea, requires the same medullary neuromedin B (Nmb)-expressing neurons as physiological sighing. Retrograde tracing from the Nmb neurons identified 12 forebrain centers providing presynaptic input, including hypocretin (Hcrt)-expressing lateral hypothalamic neurons. Confinement activates Hcrt neurons, and optogenetic activation induces sighing and tachypnea whereas pharmacologic inhibition suppresses both responses. The effect on sighing is mediated by HCRT directly on Nmbneurons. We propose that this HCRT-NMB neuropeptide relay circuit mediates claustrophobic sighing and that activated Hcrt neurons are a claustrophobia brain state that directly controls claustrophobic outputs.


Subject(s)
Brain/metabolism , Neural Pathways/metabolism , Neurons/metabolism , Orexins/metabolism , Phobic Disorders/metabolism , Animals , Behavior, Animal , Hypothalamic Area, Lateral/metabolism , Mice , Neuropeptides/metabolism , Optogenetics/methods
17.
J Thorac Oncol ; 15(4): 520-540, 2020 04.
Article in English | MEDLINE | ID: mdl-32018053

ABSTRACT

The outcomes of patients with SCLC have not yet been substantially impacted by the revolution in precision oncology, primarily owing to a paucity of genetic alterations in actionable driver oncogenes. Nevertheless, systemic therapies that include immunotherapy are beginning to show promise in the clinic. Although, these results are encouraging, many patients do not respond to, or rapidly recur after, current regimens, necessitating alternative or complementary therapeutic strategies. In this review, we discuss ongoing investigations into the pathobiology of this recalcitrant cancer and the therapeutic vulnerabilities that are exposed by the disease state. Included within this discussion, is a snapshot of the current biomarker and clinical trial landscapes for SCLC. Finally, we identify key knowledge gaps that should be addressed to advance the field in pursuit of reduced SCLC mortality. This review largely summarizes work presented at the Third Biennial International Association for the Study of Lung Cancer SCLC Meeting.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Laboratories , Lung Neoplasms/therapy , Neoplasm Recurrence, Local , Precision Medicine , Small Cell Lung Carcinoma/therapy
18.
Ann N Y Acad Sci ; 1462(1): 27-36, 2020 02.
Article in English | MEDLINE | ID: mdl-31655007

ABSTRACT

Adult stem cells are rare, undifferentiated cells found in all tissues of the body. Although normally kept in a quiescent, nondividing state, these cells can proliferate and differentiate to replace naturally dying cells within their tissue and to repair its wounds in response to injury. Due to their proliferative nature and ability to regenerate tissue, adult stem cells have the potential to treat a variety of degenerative diseases as well as aging. In addition, since stem cells are often thought to be the source of malignant tumors, understanding the mechanisms that keep their proliferative abilities in check can pave the way for new cancer therapies. While adult stem cells have had limited practical and clinical applications to date, several clinical trials of stem cell-based therapies are underway. This report details recent research presented at the New York Academy of Sciences on March 14, 2019 on understanding the factors that regulate stem cell activity and differentiation, with the hope of translating these findings into the clinic.


Subject(s)
Adult Stem Cells/transplantation , Regenerative Medicine/trends , Research Report/trends , Stem Cell Transplantation/trends , Adult , Adult Stem Cells/physiology , Aging/pathology , Animals , Cell Differentiation/physiology , Humans , Neoplasms/pathology , Neoplasms/therapy , New York City , Regenerative Medicine/methods , Stem Cell Transplantation/methods
19.
Cell ; 179(5): 1129-1143.e23, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31730854

ABSTRACT

Energy homeostasis requires precise measurement of the quantity and quality of ingested food. The vagus nerve innervates the gut and can detect diverse interoceptive cues, but the identity of the key sensory neurons and corresponding signals that regulate food intake remains unknown. Here, we use an approach for target-specific, single-cell RNA sequencing to generate a map of the vagal cell types that innervate the gastrointestinal tract. We show that unique molecular markers identify vagal neurons with distinct innervation patterns, sensory endings, and function. Surprisingly, we find that food intake is most sensitive to stimulation of mechanoreceptors in the intestine, whereas nutrient-activated mucosal afferents have no effect. Peripheral manipulations combined with central recordings reveal that intestinal mechanoreceptors, but not other cell types, potently and durably inhibit hunger-promoting AgRP neurons in the hypothalamus. These findings identify a key role for intestinal mechanoreceptors in the regulation of feeding.


Subject(s)
Feeding Behavior/physiology , Genetic Phenomena , Sensory Receptor Cells/physiology , Vagus Nerve/physiology , Agouti-Related Protein/metabolism , Animals , Brain/physiology , Gastrointestinal Tract/innervation , Genetic Markers , Mechanoreceptors/metabolism , Mice , Vagus Nerve/anatomy & histology , Viscera/innervation
20.
Cell ; 179(2): 403-416.e23, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31585080

ABSTRACT

Pulmonary neuroendocrine (NE) cells are neurosensory cells sparsely distributed throughout the bronchial epithelium, many in innervated clusters of 20-30 cells. Following lung injury, NE cells proliferate and generate other cell types to promote epithelial repair. Here, we show that only rare NE cells, typically 2-4 per cluster, function as stem cells. These fully differentiated cells display features of classical stem cells. Most proliferate (self-renew) following injury, and some migrate into the injured area. A week later, individual cells, often just one per cluster, lose NE identity (deprogram), transit amplify, and reprogram to other fates, creating large clonal repair patches. Small cell lung cancer (SCLC) tumor suppressors regulate the stem cells: Rb and p53 suppress self-renewal, whereas Notch marks the stem cells and initiates deprogramming and transit amplification. We propose that NE stem cells give rise to SCLC, and transformation results from constitutive activation of stem cell renewal and inhibition of deprogramming.


Subject(s)
Cell Transformation, Neoplastic/pathology , Lung Neoplasms/pathology , Lung/pathology , Neoplastic Stem Cells/pathology , Neuroendocrine Cells/pathology , Receptors, Notch/metabolism , Retinoblastoma Protein/metabolism , Small Cell Lung Carcinoma/pathology , Tumor Suppressor Protein p53/metabolism , Animals , Cell Differentiation , Cell Transformation, Neoplastic/metabolism , Lung Injury/pathology , Lung Neoplasms/metabolism , Mice , Neoplastic Stem Cells/metabolism , Neuroendocrine Cells/metabolism , Single-Cell Analysis/methods , Small Cell Lung Carcinoma/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...