Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 204: 111689, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33932892

ABSTRACT

Due to high biocompatibility, miniaturization, optical transparency and low production cost together with high radiation hardness the diamond-based sensors are considered promising for radiation medicine and biomedicine in general. Here we present detection of fibroblast cell culture properties by nanocrystalline diamond solution-gated field-effect transistors (SG-FET), including effects of gamma irradiation. We show that blank nanocrystalline diamond field-effect biosensors are stable at least up to 300 Gy of γ irradiation. On the other hand, gate current of the diamond SG-FET biosensors with fibroblastic cells increases exponentially over an order of magnitude with increasing radiation dose. Extracellular matrix (ECM) formation is also detected and analyzed by correlation of electronic sensor data with optical, atomic force, fluorescence, and scanning electron microscopies.


Subject(s)
Biosensing Techniques , Diamond , Extracellular Matrix , Fibroblasts , Microscopy, Electron, Scanning
2.
Front Plant Sci ; 12: 642661, 2021.
Article in English | MEDLINE | ID: mdl-33679859

ABSTRACT

Centromere drive model describes an evolutionary process initiated by centromeric repeats expansion, which leads to the recruitment of excess kinetochore proteins and consequent preferential segregation of an expanded centromere to the egg during female asymmetric meiosis. In response to these selfish centromeres, the histone protein CenH3, which recruits kinetochore components, adaptively evolves to restore chromosomal parity and counter the detrimental effects of centromere drive. Holocentric chromosomes, whose kinetochores are assembled along entire chromosomes, have been hypothesized to prevent expanded centromeres from acquiring a selective advantage and initiating centromere drive. In such a case, CenH3 would be subjected to less frequent or no adaptive evolution. Using codon substitution models, we analyzed 36 CenH3 sequences from 35 species of the holocentric family Cyperaceae. We found 10 positively selected codons in the CenH3 gene [six codons in the N-terminus and four in the histone fold domain (HFD)] and six branches of its phylogeny along which the positive selection occurred. One of the positively selected codons was found in the centromere targeting domain (CATD) that directly interacts with DNA and its mutations may be important in centromere drive suppression. The frequency of these positive selection events was comparable to the frequency of positive selection in monocentric clades with asymmetric female meiosis. Taken together, these results suggest that preventing centromere drive is not the primary adaptive role of holocentric chromosomes, and their ability to suppress it likely depends on their kinetochore structure in meiosis.

3.
Front Nutr ; 7: 35, 2020.
Article in English | MEDLINE | ID: mdl-32266282

ABSTRACT

Cultured meat aspires to be biologically equivalent to traditional meat. If cultured meat is to be consumed, sensorial (texture, color, flavor) and nutritional characteristics are of utmost importance. This paper compares cultured meat to traditional meat from a tissue engineering and meat technological point of view, focusing on several molecular, technological and sensorial attributes. We outline the challenges and future steps to be taken for cultured meat to mimic traditional meat as closely as possible.

4.
Colloids Surf B Biointerfaces ; 129: 95-9, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25835144

ABSTRACT

We show the influence of osteoblastic SAOS-2 cells on the transfer characteristics of nanocrystalline diamond solution-gated field-effect transistors (SGFET) prepared on glass substrates. Channels of these fully transparent SGFETs are realized by hydrogen termination of undoped diamond film. After cell cultivation, the transistors exhibit about 100× increased leakage currents (up to 10nA). During and after the cell delamination, the transistors return to original gate currents. We propose a mechanism where this triggering effect is attributed to ions released from adhered cells, which depends on the cell adhesion morphology, and could be used for cell culture monitoring.


Subject(s)
Action Potentials , Biosensing Techniques/instrumentation , Bone Neoplasms , Cell Adhesion , Diamond/chemistry , Osteosarcoma , Transistors, Electronic , Humans , Ions , Tumor Cells, Cultured
5.
Biointerphases ; 9(3): 031012, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25280853

ABSTRACT

The authors show that nanocrystalline diamond (NCD) thin films prepared by microwave plasma enhanced chemical vapor deposition apparatus with a linear antenna delivery system are well compatible with epithelial cells (5637 human bladder carcinoma) and significantly improve the cell adhesion compared to reference glass substrates. This is attributed to better adhesion of adsorbed layers to diamond as observed by atomic force microscopy (AFM) beneath the cells. Moreover, the cell morphology can be adjusted by appropriate surface treatment of diamond by using hydrogen and oxygen plasma. Cell bodies, cytoplasmic rims, and filopodia were characterized by Peakforce AFM. Oxidized NCD films perform better than other substrates under all conditions (96% of cells adhered well). A thin adsorbed layer formed from culture medium and supplemented with fetal bovine serum (FBS) covered the diamond surface and played an important role in the cell adhesion. Nevertheless, 50-100 nm large aggregates formed from the RPMI medium without FBS facilitated cell adhesion also on hydrophobic hydrogenated NCD (increase from 23% to 61%). The authors discuss applicability for biomedical uses.


Subject(s)
Cell Adhesion , Diamond/chemistry , Epithelial Cells/cytology , Epithelial Cells/physiology , Nanostructures/chemistry , Cell Line, Tumor , Cell Shape , Epithelial Cells/ultrastructure , Humans , Microscopy, Atomic Force
6.
Biosens Bioelectron ; 26(4): 1307-12, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-20678916

ABSTRACT

Diamond is recognized as an attractive material for merging solid-state and biological systems. The advantage of diamond field-effect transistors (FET) is that they are chemically resistant, bio-compatible, and can operate without gate oxides. Solution-gated FETs based on H-terminated nanocrystalline diamond films exhibiting surface conductivity are employed here for studying effects of fetal bovine serum (FBS) proteins and osteoblastic SAOS-2 cells on diamond electronic properties. FBS proteins adsorbed on the diamond FETs permanently decrease diamond conductivity as reflected by the -45 mV shift of the FET transfer characteristics. Cell cultivation for 2 days results in a further shift by another -78 mV. We attribute it to a change of diamond material properties rather than purely to the field-effect. Increase in gate leakage currents (by a factor of 4) indicates that the FBS proteins also decrease the diamond-electrolyte electronic barrier induced by C-H surface dipoles. We propose a model where the proteins replace ions in the very vicinity of the H-terminated diamond surface.


Subject(s)
Biosensing Techniques/methods , Blood Proteins/chemistry , Diamond/chemistry , Transistors, Electronic , Adsorption , Animals , Biosensing Techniques/instrumentation , Cattle , Cell Line , Electrochemistry/methods , Humans , Ions , Microscopy, Electron, Scanning , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Solutions , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...