Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37372633

ABSTRACT

The novelty of this study is the investigation of the effect of different heat treatments and, simultaneously, the effect of different fat levels on the quality of pork liver pâtés. Hence, this study aimed to evaluate the effect of heat treatment and fat content on selected properties of pork liver pâté. For this purpose, four batches of pâtés with two different fat contents (30 and 40% (w/w)) and two different heat treatments (pasteurisation: target temperature 70 °C, holding time of 10 min; sterilisation: target temperature 122 °C, holding time of 10 min) were manufactured. Chemical (pH, dry matter, crude protein, total lipid, ammonia, and thiobarbituric acid reactive substances (TBARS)), microbiological, colour, textural, rheological, and sensory analyses were performed. Both different heat treatment and fat content affected most of the parameters observed. Sterilisation ensured the commercial sterility of the manufactured pâtés, resulting in elevated TBARS values, hardness, cohesiveness, gumminess and springiness, and increased rheological parameters (G', G″, G*, and η*), as well as colour changes (decrease in L* and increase in a*, b*, and C* values) and deterioration of appearance, consistency, and flavour also being detected (p < 0.05). Higher fat content caused similar variations in the textural and viscoelastic properties, i.e., the increase in hardness, cohesiveness, gumminess and springiness, and also in G', G″, G*, and η* (p < 0.05). However, the colour and sensorial parameters changed in different ways compared to the changes induced by the sterilisation effect. Overall, the observed changes might not be desirable for some consumers and further research would be appropriate to improve especially the sensorial attributes of sterilised pork liver pâtés.

2.
Foods ; 12(8)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37107398

ABSTRACT

The aim of the current study was to evaluate the addition of different algal hydrocolloids (κ-carrageenan, ι-carrageenan, furcellaran, and sodium alginate) at three different concentrations (0.50, 0.75, and 1.00% w/w) on the physicochemical, viscoelastic, textural, and organoleptic properties of model cream cheese (CC) samples. On the whole, the highest viscoelastic moduli and hardness values of the CC samples were reported when κ-carrageenan was used. Furthermore, increasing the concentrations of the tested hydrocolloids led to increases in the viscoelastic moduli and hardness values of CC. Recommendations for softer-consistency CC production include the application of κ-carrageenan at a concentration of 0.50-0.75% (w/w) or the use of furcellaran and sodium alginate at a concentration of 1.00% (w/w). For the production of CC with a more rigid consistency, it is recommended to apply κ-carrageenan at a concentration higher than 0.75% (w/w).

3.
Foods ; 11(22)2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36429197

ABSTRACT

The current study was conducted to evaluate the effect of the addition of selected hydrocolloids [agar (AG), κ-carrageenan (KC), or gelatin (PG); as a total replacement for emulsifying salts] on the viscoelastic properties and microstructure of processed cheese (PC) samples during a storage period of 60 days (at 6 ± 2 °C). In general, PC viscoelastic properties and microstructure were affected by the addition of hydrocolloids and the length of storage time. The evaluated PC reported a more elastic behavior (G' > G″) over the viscous one. The highest values of viscoelastic moduli (G'; G″; G*) were recorded for PC samples manufactured with KC addition, followed by those prepared with AG and PG. The control sample presented values of viscoelastic moduli similar to those of the PG sample. All PC samples tested had fat globule size values lower than 1 µm. Moreover, PC with AG and KG addition presented similar microstructures and sizes of fat globules.

SELECTION OF CITATIONS
SEARCH DETAIL
...