Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 4(8): eaat2355, 2018 08.
Article in English | MEDLINE | ID: mdl-30151424

ABSTRACT

The ability to highly localize light with strong electric field enhancement is critical for enabling higher-efficiency solar cells, light sources, and modulators. While deep-subwavelength modes can be realized with plasmonic resonators, large losses in these metal structures preclude most practical applications. We developed an alternative approach to achieving subwavelength localization of the electric and displacement fields that is not accompanied by inhibitive losses. We experimentally demonstrate a dielectric bowtie photonic crystal structure that supports mode volumes commensurate with plasmonic elements and quality factors that reveal ultralow losses. Our approach opens the door to the extremely strong light-matter interaction regime with, simultaneously incorporating both an ultralow mode volume and an ultrahigh quality factor, that had remained elusive in optical resonators.

2.
ACS Nano ; 12(7): 6577-6587, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29932634

ABSTRACT

Silicon nanowire field effect transistor (FET) sensors have demonstrated their ability for rapid and label-free detection of proteins, nucleotide sequences, and viruses at ultralow concentrations with the potential to be a transformative diagnostic technology. Their nanoscale size gives them their ultralow detection ability but also makes their fabrication challenging with large sensor-to-sensor variations, thus limiting their commercial applications. In this work, a combined approach of nanofabrication, device simulation, materials, and electrical characterization is applied toward identifying and improving fabrication steps that induce sensor-to-sensor variations. An enhanced complementary metal-oxide-semiconductor-compatible process for fabricating silicon nanowire FET sensors on 8 in. silicon-on-insulator wafers is demonstrated. The fabricated nanowire (30 nm width) FETs with solution gates have a Nernst limit subthreshold swing (SS) of 60 ± 1 mV/decade with ∼1.7% variations, whereas literature values for SS are ≥80 mV/decade with larger (>10 times) variations. Also, their threshold voltage variations are significantly (∼3 times) reduced, compared to literature values. Furthermore, these improved FETs have significantly reduced drain current hysteresis (∼0.6 mV) and enhanced on-current to off-current ratios (∼106). These improvements resulted in nanowire FET sensors with the lowest (∼3%) reported sensor-to-sensor variations, compared to literature studies. Also, these improved nanowire sensors have the highest reported sensitivity and enhanced signal-to-noise ratio with the lowest reported defect density of 2.1 × 1018 eV-1 cm-3, in comparison to literature data. In summary, this work brings the nanowire sensor technology a step closer to commercial products for early diagnosis and monitoring of diseases.


Subject(s)
Nanowires/chemistry , Silicon/chemistry , Transistors, Electronic , Algorithms , Biosensing Techniques/instrumentation , Equipment Design , Hydrogen-Ion Concentration , Nanowires/ultrastructure
3.
Nanoscale ; 6(15): 8900-6, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-24964839

ABSTRACT

We introduce a method to fabricate solid-state nanopores with sub-20 nm diameter in membranes with embedded metal electrodes across a 200 mm wafer using CMOS compatible semiconductor processes. Multi-layer (metal-dielectric) structures embedded in membranes were demonstrated to have high uniformity (± 0.5 nm) across the wafer. Arrays of nanopores were fabricated with an average size of 18 ± 2 nm in diameter using a Reactive Ion Etching (RIE) method in lieu of TEM drilling. Shorts between the membrane-embedded metals were occasionally created after pore formation, but the RIE based pores had a much better yield (99%) of unshorted electrodes compared to TEM drilled pores (<10%). A double-stranded DNA of length 1 kbp was translocated through the multi-layer structure RIE-based nanopore demonstrating that the pores were open. The ionic current through the pore can be modulated with a gain of 3 using embedded electrodes functioning as a gate in 0.1 mM KCl aqueous solution. This fabrication approach can potentially pave the way to manufacturable nanopore arrays with the ability to electrically control the movement of single or double-stranded DNA inside the pore with embedded electrodes.


Subject(s)
Metal Nanoparticles/chemistry , Metals/chemistry , Nanopores , DNA/chemistry , Electrochemistry , Electrodes , Ions , Materials Testing , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nanotechnology , Oxygen/chemistry , Potassium Chloride/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...