Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 141(35): 13962-13969, 2019 Sep 04.
Article in English | MEDLINE | ID: mdl-31398974

ABSTRACT

The generation and matrix stabilization of ligand-free, small platinum nanoclusters (NCs) Pt12±x is presented. The metal-organic framework-template approach is based on encapsulating CO-ligated, atom-precise Pt9 Chini clusters [{Pt3(CO)6}3]2- into the zeolitic imidazolate framework ZIF-8. The selective formation of the air-stable inclusion compound [NBu4]2[{Pt3(CO)6}4]@ZIF-8 of defined atomicity Pt12 and with Pt loadings of 1-20 wt % was monitored by UV/vis and IR spectroscopy and was confirmed by high-resolution transmission electron microscopy (HR-TEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), X-ray photoelectron spectroscopy (XPS), and powder X-ray diffraction (PXRD). Thermally induced decarbonylation at 200 °C yields the composite material Ptn@ZIF-8 with a cluster atomicity n close to 12, irrespective of the Pt loading. The PtNCs retain their size even during annealing at 300 °C for 24 h and during catalytic hydrogenation of 1-hexene at 25 °C in the liquid phase. The Ptn@ZIF-8 material can conveniently be used for storing small PtNCs and their further processing. Removal of the protective ZIF-8 matrix under acidic conditions and transfer of the PtNCs to carbon substrates yields defined aggregation to small Pt nanoparticles (1.14 ± 0.35 nm, HR-TEM), which have previously shown exceptional performance in the electrocatalytic oxygen reduction reaction (ORR).

2.
Angew Chem Int Ed Engl ; 58(28): 9596-9600, 2019 Jul 08.
Article in English | MEDLINE | ID: mdl-31050857

ABSTRACT

High oxygen reduction (ORR) activity has been for many years considered as the key to many energy applications. Herein, by combining theory and experiment we prepare Pt nanoparticles with optimal size for the efficient ORR in proton-exchange-membrane fuel cells. Optimal nanoparticle sizes are predicted near 1, 2, and 3 nm by computational screening. To corroborate our computational results, we have addressed the challenge of approximately 1 nm sized Pt nanoparticle synthesis with a metal-organic framework (MOF) template approach. The electrocatalyst was characterized by HR-TEM, XPS, and its ORR activity was measured using a rotating disk electrode setup. The observed mass activities (0.87±0.14 A mgPt -1 ) are close to the computational prediction (0.99 A mgPt -1 ). We report the highest to date mass activity among pure Pt catalysts for the ORR within similar size range. The specific and mass activities are twice as high as the Tanaka commercial Pt/C catalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...