Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35954953

ABSTRACT

COVID-19 causes acute respiratory illness in humans. The direct consequence of the spread of the virus is the need to find appropriate and effective solutions to reduce its spread. Similar to other countries, the pandemic has spread in Algeria, with noticeable variation in mortality and infection rates between regions. We aimed to estimate the proportion of people who died or became infected with SARS-CoV-2 in each provinces using a Bayesian approach. The estimation parameters were determined using a binomial distribution along with an a priori distribution, and the results had a high degree of accuracy. The Bayesian model was applied during the third wave (1 January-15 August 2021), in all Algerian's provinces. For spatial analysis of duration, geographical maps were used. Our findings show that Tissemsilt, Ain Defla, Illizi, El Taref, and Ghardaia (Mean = 0.001) are the least affected provinces in terms of COVID-19 mortality. The results also indicate that Tizi Ouzou (Mean = 0.0694), Boumerdes (Mean = 0.0520), Annaba (Mean = 0.0483), Tipaza (Mean = 0.0524), and Tebessa (Mean = 0.0264) are more susceptible to infection, as they were ranked in terms of the level of corona infections among the 48 provinces of the country. Their susceptibility seems mainly due to the population density in these provinces. Additionally, it was observed that northeast Algeria, where the population is concentrated, has the highest infection rate. Factors affecting mortality due to COVID-19 do not necessarily depend on the spread of the pandemic. The proposed Bayesian model resulted in being useful for monitoring the pandemic to estimate and compare the risks between provinces. This statistical inference can provide a reasonable basis for describing future pandemics in other world geographical areas.


Subject(s)
COVID-19 , Algeria/epidemiology , Bayes Theorem , COVID-19/epidemiology , Humans , Pandemics , SARS-CoV-2
2.
Materials (Basel) ; 15(10)2022 May 17.
Article in English | MEDLINE | ID: mdl-35629599

ABSTRACT

This paper addresses the issues in making wood-concrete composites more resilient to environmental conditions and to improve their compressive strength. Tests were carried out on cubic specimens of 10 × 10 × 10 cm3 composed of ordinary concrete with a 2% redwood- and hardwood-chip dosage. Superficial treatments of cement and lime were applied to the wood chips. All specimens were kept for 28 days in the open air and for 12 months in: the open air, drinking water, seawater, and an oven. Consequently, the compressive strength of ordinary concrete is approximately 37.1 MPa. After 365 days of exposure to the open air, drinking water, seawater, and the oven, a resistance loss of 35.84, 36.06, 42.85, and 52.30% were observed, respectively. In all environments investigated, the untreated wood composite concrete's resistance decreased significantly, while the cement/lime treatment of the wood enhanced them. However, only 15.5 MPa and 14.6 MPa were attained after the first 28 days in the cases of the redwood and the hardwood treated with lime. These findings indicate that the resistance of wood-concrete composites depends on the type of wood used. Treating wood chips with cement is a potential method for making these materials resistant in conservation situations determined by the cement's chemical composition. The current study has implications for researchers and practitioners for further understanding the impact of these eco-friendly concretes in the construction industry.

3.
Polymers (Basel) ; 14(5)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35267730

ABSTRACT

Polymers and polymer composites are negatively impacted by environmental ageing, reducing their service lifetimes. The uncertainty of the material interaction with the environment compromises their superior strength and stiffness. Validation of new composite materials and structures often involves lengthy and expensive testing programs. Therefore, modelling is an affordable alternative that can partly replace extensive testing and thus reduce validation costs. Durability prediction models are often subject to conflicting requirements of versatility and minimum experimental efforts required for their validation. Based on physical observations of composite macroproperties, engineering and phenomenological models provide manageable representations of complex mechanistic models. This review offers a systematised overview of the state-of-the-art models and accelerated testing methodologies for predicting the long-term mechanical performance of polymers and polymer composites. Accelerated testing methods for predicting static, creep, and fatig ue lifetime of various polymers and polymer composites under environmental factors' single or coupled influence are overviewed. Service lifetimes are predicted by means of degradation rate models, superposition principles, and parametrisation techniques. This review is a continuation of the authors' work on modelling environmental ageing of polymer composites: the first part of the review covered multiscale and modular modelling methods of environmental degradation. The present work is focused on modelling engineering mechanical properties.

4.
Polymers (Basel) ; 14(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35012240

ABSTRACT

Service lifetimes of polymers and polymer composites are impacted by environmental ageing. The validation of new composites and their environmental durability involves costly testing programs, thus calling for more affordable and safe alternatives, and modelling is seen as such an alternative. The state-of-the-art models are systematized in this work. The review offers a comprehensive overview of the modular and multiscale modelling approaches. These approaches provide means to predict the environmental ageing and degradation of polymers and polymer composites. Furthermore, the systematization of methods and models presented herein leads to a deeper and reliable understanding of the physical and chemical principles of environmental ageing. As a result, it provides better confidence in the modelling methods for predicting the environmental durability of polymeric materials and fibre-reinforced composites.

5.
Polymers (Basel) ; 12(7)2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32664276

ABSTRACT

The wetting of rough polymer surfaces is of great importance for many technical applications. In this paper, we demonstrate the relationship between the mean roughness values and the fractal dimension of rough and self-affine PTFE surfaces. We have used white light interferometry measurements to obtain information about the complex topography of the technical surfaces having different height distributions. Two different methods for the calculation of the fractal dimension were used: The height difference correlation function (HDC) and the cube counting method. It was demonstrated that the mean roughness value (Ra) correlates better with the fractal dimension Df determined by the cube counting method than with the Df values obtained from HDC calculations. However, the HDC values show a stronger dependency by changing the surface roughness. The advancing and receding contact angles as well as the contact angle hysteresis of PTFE samples of different roughness were studied by the modified Wilhelmy balance technique using deionized water as a liquid. The modified Wilhelmy balance technique enables the possibility for future analysis of very rough PTFE surfaces which are difficult to investigate with the sessile drop method.

6.
Polymers (Basel) ; 11(11)2019 Nov 09.
Article in English | MEDLINE | ID: mdl-31717515

ABSTRACT

Long-term creep properties and the effect of water are important for fiber reinforced polymer (FRP) composite materials used in offshore applications. Epoxies are often used as a matrix material in such composites. A typical design lifetime of offshore FRP structures is 25 or more years in direct contact with water leading to some deterioration of the material properties. Knowing and predicting the extent of the material property deterioration in water is of great interest for designers and users of the offshore FRP structures. It has been established that the time-temperature superposition principle (TTSP) is a useful tool for estimating changes in properties of polymer materials at long times or extreme temperatures. In this work, a time-temperature-plasticization superposition principle (TTPSP) is described and used for predicting the long-term creep behavior of an epoxy compound. The studied epoxy does not degrade chemically via hydrolysis or chain scission but is negatively affected by plasticization with water. The methodology enables prediction of the long-term viscoelastic behavior of amorphous polymers at temperatures below the glass transition (Tg) using short-term creep experimental data. The results also indicate that it is possible to estimate the creep behavior of the plasticized polymer based on the short-term creep data of the respective dry material and the difference between Tg values of dry polymer and plasticized polymer. The methodology is useful for accelerated testing and for predicting the time-dependent mechanical properties of a plasticized polymer below the glass transition temperature.

7.
Materials (Basel) ; 11(4)2018 Apr 11.
Article in English | MEDLINE | ID: mdl-29641451

ABSTRACT

Monitoring water content and predicting the water-induced drop in strength of fiber-reinforced composites are of great importance for the oil and gas and marine industries. Fourier transform infrared (FTIR) spectroscopic methods are broadly available and often used for process and quality control in industrial applications. A benefit of using such spectroscopic methods over the conventional gravimetric analysis is the possibility to deduce the mass of an absolutely dry material and subsequently the true water content, which is an important indicator of water content-dependent properties. The objective of this study is to develop an efficient and detailed method for estimating the water content in epoxy resins and fiber-reinforced composites. In this study, Fourier transform near-infrared (FT-NIR) spectroscopy was applied to measure the water content of amine-epoxy neat resin. The method was developed and successfully extended to glass fiber-reinforced composite materials. Based on extensive measurements of neat resin and composite samples of varying water content and thickness, regression was performed, and the quantitative absorbance dependence on water content in the material was established. The mass of an absolutely dry resin was identified, and the true water content was obtained. The method was related to the Beer-Lambert law and explained in such terms. A detailed spectroscopic method for measuring water content in resins and fiber-reinforced composites was developed and described.

8.
Polymers (Basel) ; 10(9)2018 Sep 13.
Article in English | MEDLINE | ID: mdl-30960942

ABSTRACT

Epoxies are often exposed to water due to rain and humid air environments. Epoxy yellows during its service time under these conditions, even when protected from UV radiation. The material's color is not regained upon redrying, indicating irreversible aging mechanisms. Understanding what causes a discoloration is of importance for applications where the visual aspect of the material is significant. In this work, irreversible aging mechanisms and the cause of yellowing were identified. Experiments were performed using a combination of FT-NIR, ATR-FT-IR, EDX, HR-ICP-MS, pH measurements, optical microscopy, SEM, and DMTA. Such extensive material characterization and structured logic of investigation, provided the necessary evidence to investigate the long-term changes. No chain scission (hydrolysis or oxidation-induced) was present in the studied common DGEBA/HDDGE/IPDA/POPA epoxy, whilst it was found that thermo-oxidation and leaching occurred. Thermo-oxidation involved evolution of carbonyl groups in the polymeric carbon⁻carbon backbone, via nucleophilic radical attack and minor crosslinking of the HDDGE segments. Four probable reactive sites were identified, and respective reactions were proposed. Compounds involved in leaching were identified to be epichlorohydrin and inorganic impurities but were found to be unrelated to yellowing. Carbonyl formation in the epoxy backbone due to thermo-oxidation was the cause for the yellowing of the material.

9.
Acta Bioeng Biomech ; 20(4): 47-57, 2018.
Article in English | MEDLINE | ID: mdl-30821289

ABSTRACT

PURPOSE: Hydroxyapatite is the main mineral component in bones and teeth, thus being an important material in bone tissue engineering, e.g., for replacement and elimination of defects. Hydroxyapatite is widely used in real-life applications due to excellent biocompatibility and bioactivity. Wet precipitation synthesis of hydroxyapatite is limited by diffusivity. Hence, choice of a diffusion model becomes critical. The purpose of this work is three-fold. It experimentally validates the use of Ginstling-Brounshtein model for hydroxyapatite synthesis. It determines the effect of Ca(OH)2 concentration on the kinetics and reports a modified model to account for this phenomenon. It reports obtained kinetic constants that describe hydroxyapatite synthesis. METHODS: Particle size was determined using scanning electron microscopy and digital microscopy. Conversion kinetics were monitored using powder X-ray diffraction. RESULTS: Experimental validation was provided. Furthermore, the process was found dependent on the calcium hydroxide concentration and the model was modified to account for this phenomenon. Kinetic constants describing the synthesis of hydroxyapatite were obtained and reported. CONCLUSIONS: The model was well consistent with the experimental data and can be used for describing synthesis of hydroxyapatite for various suspension concentrations.


Subject(s)
Chemical Precipitation , Durapatite/chemistry , Models, Theoretical , Calcium Hydroxide/chemistry , Kinetics , Particle Size , Regression Analysis , Wettability , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...