Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 131(9)2018 05 08.
Article in English | MEDLINE | ID: mdl-29632241

ABSTRACT

The cell adhesion molecule L1 (also known as L1CAM) plays important roles in the mammalian nervous system under physiological and pathological conditions. We have previously reported that proteolytic cleavage of L1 by myelin basic protein leads to the generation of a 70 kDa transmembrane L1 fragment (L1-70) that promotes neuronal migration and neuritogenesis. Here, we provide evidence that L1-70 is imported from the cytoplasm into mitochondria. Genetic ablation of L1, inhibition of mitochondrial import of L1-70 or prevention of myelin basic protein-mediated generation of L1-70 all lead to reduced mitochondrial complex I activity, and impaired mitochondrial membrane potential, fusion, fission and motility, as well as increased retrograde transport. We identified NADH dehydrogenase ubiquinone flavoprotein 2 as a binding partner for L1, suggesting that L1-70 interacts with this complex I subunit to regulate complex I activity. The results of our study provide insights into novel functions of L1 in mitochondrial metabolism and cellular dynamics. These functions are likely to ameliorate the consequences of acute nervous system injuries and chronic neurodegenerative diseases.


Subject(s)
Mitochondria/metabolism , Neural Cell Adhesion Molecule L1/metabolism , Peptide Fragments/metabolism , Animals , Brain/metabolism , Cytoplasm/metabolism , Female , Male , Mice , Protein Transport
2.
Mol Neurobiol ; 55(9): 7164-7178, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29383692

ABSTRACT

Proteolytic cleavage of the neuronal isoform of the murine cell adhesion molecule L1, triggered by stimulation of the cognate L1-dependent signaling pathways, results in the generation and nuclear import of an L1 fragment that contains the intracellular domain, the transmembrane domain, and part of the extracellular domain. Here, we show that the LXXLL and FXXLF motifs in the extracellular and transmembrane domain of this L1 fragment mediate the interaction with the nuclear estrogen receptors α (ERα) and ß (ERß), peroxisome proliferator-activated receptor γ (PPARγ), and retinoid X receptor ß (RXRß). Mutations of the LXXLL motif in the transmembrane domain and of the FXXLF motif in the extracellular domain disturb the interaction of the L1 fragment with these nuclear receptors and, when introduced by viral transduction into mouse embryos in utero, result in impaired motor coordination, learning and memory, as well as synaptic connectivity in the cerebellum, in adulthood. These impairments are similar to those observed in the L1-deficient mouse. Our findings suggest that the interplay of nuclear L1 and distinct nuclear receptors is associated with synaptic contact formation and plasticity.


Subject(s)
Motor Activity , Neural Cell Adhesion Molecule L1/metabolism , Neuronal Plasticity , Receptors, Cytoplasmic and Nuclear/metabolism , Amino Acid Motifs , Animals , Glutamates/metabolism , Male , Mice , Mutation/genetics , Neural Cell Adhesion Molecule L1/chemistry , Protein Binding , Purkinje Cells/metabolism , Purkinje Cells/pathology , Purkinje Cells/ultrastructure , gamma-Aminobutyric Acid/metabolism
3.
Thromb Res ; 134(6): 1285-91, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25201004

ABSTRACT

INTRODUCTION: The multimeric form of von Willebrand factor (VWF), is the largest soluble protein in mammals and exhibits a multidomain structure resulting in multiple functions. Upon agonist stimulation endothelial cells secrete VWF multimers from Weibel-Palade bodies into the blood stream where VWF plays an essential role in platelet-dependent primary hemostasis. Elongation of VWF strings on the cells' surface leads to accessibility of VWF binding sites for proteins, such as platelet membrane glycoprotein Ib. The prothrombotic strings are size-regulated by the metalloprotease ADAMTS13 by shear force-activated proteolytic cleavage. MATERIAL AND METHODS: VWF string formation was induced by histamine stimulation of HUVEC cells under unidirectional shear flow and VWF strings were detected employing the VWF binding peptide of platelet glycoprotein Ib coupled to latex beads. VWF strings were then used as substrate for kinetic studies of recombinant and plasma ADAMTS13. RESULTS: To investigate specific aspects of the shear-dependent functions of VWF and ADAMTS13, we developed a shear flow assay that allows observation of VWF string formation and their degradation by ADAMTS13 without the need for isolated platelets. Our assay specifically detects VWF strings, can be coupled with fluorescent applications and allows semi-automated, quantitative assessment of recombinant and plasma ADAMTS13 activity. CONCLUSIONS: Our assay may serve as a valuable research tool to investigate the biochemical characteristics of VWF and ADAMTS13 under shear flow and could complement diagnostics of von Willebrand Disease and Thrombotic Thrombocytopenic Purpura as it allows detection of shear flow-dependent dysfunction of VWD-associated VWF mutants as well as TTP-associated ADAMTS13 mutants.


Subject(s)
ADAM Proteins/chemistry , ADAM Proteins/physiology , Biological Assay/methods , Endothelial Cells/physiology , Flow Injection Analysis/methods , von Willebrand Factor/chemistry , von Willebrand Factor/physiology , ADAMTS13 Protein , Cells, Cultured , Shear Strength/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...