Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Biol ; 22(1): 150, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973001

ABSTRACT

BACKGROUND: Accurate detection of pheromones is crucial for chemical communication and reproduction in insects. In holometabolous flies and moths, the sensory neuron membrane protein 1 (SNMP1) is essential for detecting long-chain aliphatic pheromones by olfactory neurons. However, its function in hemimetabolous insects and its role for detecting pheromones of a different chemical nature remain elusive. Therefore, we investigated the relevance of SNMP1 for pheromone detection in a hemimetabolous insect pest of considerable economic importance, the desert locust Schistocerca gregaria, which moreover employs the aromatic pheromone phenylacetonitrile (PAN) to govern reproductive behaviors. RESULTS: Employing CRISPR/Cas-mediated gene editing, a mutant locust line lacking functional SNMP1 was established. In electroantennography experiments and single sensillum recordings, we found significantly decreased electrical responses to PAN in SNMP1-deficient (SNMP1-/-) locusts. Moreover, calcium imaging in the antennal lobe of the brain revealed a substantially reduced activation of projection neurons in SNMP1-/- individuals upon exposure to PAN, indicating that the diminished antennal responsiveness to PAN in mutants affects pheromone-evoked neuronal activity in the brain. Furthermore, in behavioral experiments, PAN-induced effects on pairing and mate choice were altered in SNMP1-/- locusts. CONCLUSIONS: Our findings emphasize the importance of SNMP1 for chemical communication in a hemimetabolous insect pest. Moreover, they show that SNMP1 plays a crucial role in pheromone detection that goes beyond long-chain aliphatic substances and includes aromatic compounds controlling reproductive behaviors.


Subject(s)
Grasshoppers , Membrane Proteins , Animals , Grasshoppers/physiology , Grasshoppers/drug effects , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Pheromones/pharmacology , Sexual Behavior, Animal/physiology , Sexual Behavior, Animal/drug effects , Female , Courtship , Acetonitriles/pharmacology , Insect Proteins/genetics , Insect Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
2.
Nat Commun ; 15(1): 5476, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942759

ABSTRACT

Desert locust plagues threaten the food security of millions. Central to their formation is crowding-induced plasticity, with social phenotypes changing from cryptic (solitarious) to swarming (gregarious). Here, we elucidate the implications of this transition on foraging decisions and corresponding neural circuits. We use behavioral experiments and Bayesian modeling to decompose the multi-modal facets of foraging, revealing olfactory social cues as critical. To this end, we investigate how corresponding odors are encoded in the locust olfactory system using in-vivo calcium imaging. We discover crowding-dependent synergistic interactions between food-related and social odors distributed across stable combinatorial response maps. The observed synergy was specific to the gregarious phase and manifested in distinct odor response motifs. Our results suggest a crowding-induced modulation of the locust olfactory system that enhances food detection in swarms. Overall, we demonstrate how linking sensory adaptations to behaviorally relevant tasks can improve our understanding of social modulation in non-model organisms.


Subject(s)
Bayes Theorem , Grasshoppers , Odorants , Smell , Social Behavior , Animals , Grasshoppers/physiology , Smell/physiology , Behavior, Animal/physiology , Crowding , Feeding Behavior/physiology , Olfactory Perception/physiology , Male , Female , Cues
3.
In Vitro Cell Dev Biol Anim ; 55(9): 686-693, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31410641

ABSTRACT

The fall armyworm, Spodoptera frugiperda (Sf), is a polyphagous lepidopteran herbivore that consumes more than 80 plant species, including many economically important crops, such as corn, soybeans, and sorghum. While already a serious pest in the Americas, it was recently introduced into Africa, India, and China. Because of its high economic costs in the New World and the continent-wide damage potentials in Africa, research to develop advanced pest management technologies is necessary. We are supporting this need by developing novel, next-generation insect cell lines from targeted tissues. Cell lines, such as these, will boost insecticide discovery programs and lead to innovative pest management solutions. Here, we report on the establishment of 16 new cell lines from larval S. frugiperda tissues: nine from the central nervous system, three from the aorta, and four from the testes. We confirmed the identities of the cell lines by DNA amplification fingerprinting polymerase chain reaction, determined their doubling times from growth curves, and described cell types via microscopy. We also developed 16 sublines from three neuronal cell lines.


Subject(s)
Cell Line/cytology , Spodoptera/cytology , Animals , China , India , Insecticides/pharmacology , Larva/growth & development , Sorghum/parasitology , Glycine max/parasitology , Spodoptera/growth & development , Spodoptera/pathogenicity , Zea mays/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...