Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Opt Lett ; 49(3): 418-421, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300022

ABSTRACT

This Letter examines sharpness metric maximization methods on 3D images obtained at Table Mountain, Colorado. We employ multi-wavelength 3D imaging with digital holography and a pilot tone to obtain the aberrated images and use sharpness metric maximization to correct the aberrated images with both pupil-plane and multi-plane corrections. Image quality improves when sharpness metric maximization is used and particularly with multi-plane correction.

2.
J Vis Exp ; (186)2022 08 09.
Article in English | MEDLINE | ID: mdl-36036601

ABSTRACT

The evaluation of changes in heart contractility is essential during preclinical development for new cardiac- and non-cardiac-targeted compounds. This paper describes a protocol for assessing changes in contractility in adult human primary ventricular cardiomyocytes utilizing the MyoBLAZER, a non-invasive optical method that preserves the normal physiology and pharmacology of the cells. This optical recording method continuously measures contractility transients from multiple cells in parallel, providing both medium-throughput and valuable information for each individual cell in the field of view, enabling the real-time tracking of drug effects. The cardiomyocyte contractions are induced by paced electrical field stimulation, and the acquired bright field images are fed to an image-processing software that measures the sarcomere shortening across multiple cardiomyocytes. This method rapidly generates different endpoints related to the kinetics of contraction and relaxation phases, and the resulting data can then be interpreted in relation to different concentrations of a test article. This method is also employed in the late stages of preclinical development to perform follow-up mechanistic studies to support ongoing clinical studies. Thus, the adult human primary cardiomyocyte-based model combined with the optical system for continuous contractility monitoring has the potential to contribute to a new era of in vitro cardiac data translatability in preclinical medical therapy development.


Subject(s)
Myocardial Contraction , Myocytes, Cardiac , Adult , Humans , Myocytes, Cardiac/physiology , Sarcomeres
3.
J Clin Lipidol ; 10(2): 356-67, 2016.
Article in English | MEDLINE | ID: mdl-27055967

ABSTRACT

BACKGROUND: Humans with familial lecithin:cholesterol acyltransferase (LCAT) deficiency (FLD) have extremely low or undetectable high-density lipoprotein cholesterol (HDL-C) levels and by early adulthood develop many manifestations of the disorder, including corneal opacities, anemia, and renal disease. OBJECTIVE: To determine if infusions of recombinant human LCAT (rhLCAT) could reverse the anemia, halt progression of renal disease, and normalize HDL in FLD. METHODS: rhLCAT (ACP-501) was infused intravenously over 1 hour on 3 occasions in a dose optimization phase (0.3, 3.0, and 9.0 mg/kg), then 3.0 or 9.0 mg/kg every 1 to 2 weeks for 7 months in a maintenance phase. Plasma lipoproteins, lipids, LCAT levels, and several measures of renal function and other clinical labs were monitored. RESULTS: LCAT concentration peaked at the end of each infusion and decreased to near baseline over 7 days. Renal function generally stabilized or improved and the anemia improved. After infusion, HDL-C rapidly increased, peaking near normal in 8 to 12 hours; analysis of HDL particles by various methods all revealed rapid sequential disappearance of preß-HDL and small α-4 HDL and appearance of normal α-HDL. Low-density lipoprotein cholesterol increased more slowly than HDL-C. Of note, triglyceride routinely decreased after meals after infusion, in contrast to the usual postprandial increase in the absence of rhLCAT infusion. CONCLUSIONS: rhLCAT infusions were well tolerated in this first-in-human study in FLD; the anemia improved, as did most parameters related to renal function in spite of advanced disease. Plasma lipids transiently normalized, and there was rapid sequential conversion of small preß-HDL particles to mature spherical α-HDL particles.


Subject(s)
Lecithin Cholesterol Acyltransferase Deficiency/drug therapy , Phosphatidylcholine-Sterol O-Acyltransferase/therapeutic use , Anemia/complications , Cholesterol, HDL/blood , Disease Progression , Hematologic Tests , Humans , Kidney/drug effects , Lecithin Cholesterol Acyltransferase Deficiency/blood , Lecithin Cholesterol Acyltransferase Deficiency/complications , Lecithin Cholesterol Acyltransferase Deficiency/enzymology , Male , Middle Aged , Phosphatidylcholine-Sterol O-Acyltransferase/adverse effects , Phosphatidylcholine-Sterol O-Acyltransferase/pharmacokinetics , Phosphatidylcholine-Sterol O-Acyltransferase/pharmacology , Recombinant Proteins/adverse effects , Recombinant Proteins/pharmacokinetics , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Safety
4.
Circ Res ; 118(1): 73-82, 2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26628614

ABSTRACT

RATIONALE: Low high-density lipoprotein-cholesterol (HDL-C) in patients with coronary heart disease (CHD) may be caused by rate-limiting amounts of lecithin:cholesterol acyltransferase (LCAT). Raising LCAT may be beneficial for CHD, as well as for familial LCAT deficiency, a rare disorder of low HDL-C. OBJECTIVE: To determine safety and tolerability of recombinant human LCAT infusion in subjects with stable CHD and low HDL-C and its effect on plasma lipoproteins. METHODS AND RESULTS: A phase 1b, open-label, single-dose escalation study was conducted to evaluate safety, tolerability, pharmacokinetics, and pharmacodynamics of recombinant human LCAT (ACP-501). Four cohorts with stable CHD and low HDL-C were dosed (0.9, 3.0, 9.0, and 13.5 mg/kg, single 1-hour infusions) and followed up for 28 days. ACP-501 was well tolerated, and there were no serious adverse events. Plasma LCAT concentrations were dose-proportional, increased rapidly, and declined with an apparent terminal half-life of 42 hours. The 0.9-mg/kg dose did not significantly change HDL-C; however, 6 hours after doses of 3.0, 9.0, and 13.5 mg/kg, HDL-C was elevated by 6%, 36%, and 42%, respectively, and remained above baseline ≤4 days. Plasma cholesteryl esters followed a similar time course as HDL-C. ACP-501 infusion rapidly decreased small- and intermediate-sized HDL, whereas large HDL increased. Pre-ß-HDL also rapidly decreased and was undetectable ≤12 hours post ACP-501 infusion. CONCLUSIONS: ACP-501 has an acceptable safety profile after a single intravenous infusion. Lipid and lipoprotein changes indicate that recombinant human LCAT favorably alters HDL metabolism and support recombinant human LCAT use in future clinical trials in CHD and familial LCAT deficiency patients. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01554800.


Subject(s)
Phosphatidylcholine-Sterol O-Acyltransferase/administration & dosage , Phosphatidylcholine-Sterol O-Acyltransferase/blood , Recombinant Proteins/administration & dosage , Recombinant Proteins/blood , Adult , Aged , Aged, 80 and over , Dose-Response Relationship, Drug , Exanthema/chemically induced , Female , Follow-Up Studies , Humans , Male , Middle Aged , Phosphatidylcholine-Sterol O-Acyltransferase/adverse effects , Recombinant Proteins/adverse effects
5.
Curr Opin Lipidol ; 24(6): 480-6, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24184938

ABSTRACT

PURPOSE OF REVIEW: New therapeutic strategies are needed for the rapid stabilization of acute coronary syndrome (ACS) patients by treating nonculprit lesions. Reconstituted HDL (rHDL), which is apoA-I combined with phospholipids, is currently being tested in clinical trials for this purpose and is the subject of this review. RECENT FINDINGS: At least four different formulations (SRC-rHDL, CSL-111, CSL-112 and ETC-216) have been tested in clinical trials. The various rHDL preparations have been shown to be effective in the rapid mobilization of excess cholesterol from cells and in regressing atherosclerotic plaques in animal models. Two of the rHDL agents, namely ETC-216 and CSL-111, have been shown to be effective after only a few treatments in reducing plaque volume in ACS patients, as assessed by intravascular ultrasound, but no clinical trials assessing clinical endpoints have yet been completed. SUMMARY: rHDL is a promising new potential therapy for ACS patients, but much work remains to be done, and there are many unresolved questions. Progress in developing rHDL into a therapy will depend on improving our understanding of their mechanism of action, determining the optimum formulation and delivery and how to monitor rHDL therapy.


Subject(s)
Acute Coronary Syndrome/drug therapy , Lipoproteins, HDL/chemistry , Lipoproteins, HDL/therapeutic use , Animals , Apolipoprotein A-I/metabolism , Chemistry, Pharmaceutical , Humans , Lipoproteins, HDL/metabolism
6.
Appl Opt ; 51(36): 8745-61, 2012 Dec 20.
Article in English | MEDLINE | ID: mdl-23262614

ABSTRACT

A principal difficulty of long dwell coherent imaging ladar is its extreme sensitivity to target or platform motion. This paper describes a motion compensated frequency modulated continuous wave 3D coherent imaging ladar method that overcomes this motion sensitivity, making it possible to work with nonstatic targets such as human faces, as well as imaging of targets through refractive turbulence. Key features of this method include scannerless imaging and high range resolution. The reduced motion sensitivity is shown with mathematical analysis and demonstration 3D images. Images of static and dynamic targets are provided demonstrating up to 600×800 pixel imaging with millimeter range resolution.

7.
J Pharmacol Exp Ther ; 335(1): 140-8, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20605907

ABSTRACT

Lecithin cholesterol acyl transferase (LCAT) deficiency is associated with low high-density lipoprotein (HDL) and the presence of an abnormal lipoprotein called lipoprotein X (Lp-X) that contributes to end-stage renal disease. We examined the possibility of using LCAT an as enzyme replacement therapy agent by testing the infusion of human recombinant (r)LCAT into several mouse models of LCAT deficiency. Infusion of plasma from human LCAT transgenic mice into LCAT-knockout (KO) mice rapidly increased HDL-cholesterol (C) and lowered cholesterol in fractions containing very-low-density lipoprotein (VLDL) and Lp-X. rLCAT was produced in a stably transfected human embryonic kidney 293f cell line and purified to homogeneity, with a specific activity of 1850 nmol/mg/h. Infusion of rLCAT intravenously, subcutaneously, or intramuscularly into human apoA-I transgenic mice showed a nearly identical effect in increasing HDL-C approximately 2-fold. When rLCAT was intravenously injected into LCAT-KO mice, it showed a similar effect as plasma from human LCAT transgenic mice in correcting the abnormal lipoprotein profile, but it had a considerably shorter half-life of approximately 1.23 ± 0.63 versus 8.29 ± 1.82 h for the plasma infusion. rLCAT intravenously injected in LCAT-KO mice crossed with human apolipoprotein (apo)A-I transgenic mice had a half-life of 7.39 ± 2.1 h and increased HDL-C more than 8-fold. rLCAT treatment of LCAT-KO mice was found to increase cholesterol efflux to HDL isolated from mice when added to cells transfected with either ATP-binding cassette (ABC) transporter A1 or ABCG1. In summary, rLCAT treatment rapidly restored the normal lipoprotein phenotype in LCAT-KO mice and increased cholesterol efflux, suggesting the possibility of using rLCAT as an enzyme replacement therapy agent for LCAT deficiency.


Subject(s)
Lipoproteins/metabolism , Phosphatidylcholine-Sterol O-Acyltransferase/pharmacology , Animals , Apolipoproteins E/metabolism , Cholesterol/metabolism , Cholesterol Esters/metabolism , Cricetinae , Humans , Infusions, Intravenous , Lipid Metabolism/drug effects , Lipoproteins, VLDL/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphatidylcholine-Sterol O-Acyltransferase/administration & dosage , Phosphatidylcholine-Sterol O-Acyltransferase/genetics , Recombinant Proteins
9.
J Am Coll Cardiol ; 51(11): 1098-103, 2008 Mar 18.
Article in English | MEDLINE | ID: mdl-18342229

ABSTRACT

OBJECTIVES: This study sought to evaluate in vivo the minimal dose of apolipoprotein (apo) A-I(Milano) phospholipid complex (recombinant apoA-I(Milano) and 1-palmitoyl-2-oleoyl phosphatidylcholine complexes [ETC-216]) able to induce atherosclerosis regression in a rabbit model of lipid-rich plaques. BACKGROUND: A single high dose of recombinant apoA-I(Milano) has promoted atherosclerosis regression in animal models. More recently, regression of atherosclerosis was achieved in coronary patients by repeated infusions of ETC-216. METHODS: Thirty-six rabbits underwent perivascular injury at both carotid arteries, followed by a 1.5% cholesterol diet. After 90 days, rabbits were randomly divided into 6 groups and treated 5 times with vehicle or ETC-216 at 5, 10, 20, 40, or 150 mg/kg dose every 4 days. Carotid plaque changes were evaluated in vivo by intravascular ultrasound (IVUS) and magnetic resonance imaging (MRI), performed before and at the end of treatments. Magnetic resonance imaging scans were also recorded after administration of the second dose for rabbits infused with vehicle 40 or 150 mg/kg. RESULTS: Atheroma volume in vehicle-treated rabbits increased dramatically between the first and the second IVUS analyses (+26.53%), whereas in ETC-216-treated animals, a reduced progression at the lower doses and a significant regression at the higher doses, up to -6.83%, was detected. Results obtained by MRI analysis correlated significantly with those at IVUS (r = 0.706; p < 0.0001). The MRI evaluations after the second infusion established that a significant regression was achieved with only 2 administrations of the highest dose. CONCLUSIONS: These results confirm the efficacy of ETC-216 for atherosclerosis treatment and provide guidance for dose selection and frequency to obtain a significant reduction of plaque volume.


Subject(s)
Anticholesteremic Agents/administration & dosage , Apolipoprotein A-I/administration & dosage , Atherosclerosis/diagnosis , Atherosclerosis/drug therapy , Carotid Artery, Common/drug effects , Carotid Stenosis/drug therapy , Phosphatidylcholines/administration & dosage , Animals , Carotid Stenosis/diagnosis , Cholesterol, HDL/blood , Disease Models, Animal , Dose-Response Relationship, Drug , Magnetic Resonance Imaging , Male , Rabbits , Random Allocation , Ultrasonography
10.
J Am Coll Cardiol ; 51(11): 1104-9, 2008 Mar 18.
Article in English | MEDLINE | ID: mdl-18342230

ABSTRACT

OBJECTIVES: This study sought to assess the effect of short-term apolipoprotein (apo) A-I(Milano) administration on plaque size and on suspected markers of plaque vulnerability. BACKGROUND: Long-term lipid-lowering interventions can regress and stabilize atherosclerotic plaques. However, the majority of recurrent events occur early after the first episode. Interventions able to acutely induce plaque regression and stabilization are lacking. Regression of human coronary lesions after 5 weeks of treatment with apoA-I(Milano) administration has been shown. However, there are no data regarding its effect on plaque vulnerability. METHODS: Advanced aortic lesions were induced in New Zealand White rabbits (n = 40). Plaque size was assessed by magnetic resonance imaging (MRI) at the end of atherosclerosis induction. Animals were randomized to placebo or apoA-I(Milano) phospholipids (ETC-216), 2 infusions 4 days apart. After the last dose, another MRI study was performed and aortas were processed for cellular composition and gene protein expression of markers associated with plaque instability. RESULTS: Pre-treatment MRI showed similar plaque size in both groups, whereas post-treatment MRI showed 6% smaller plaques in apoA-I(Milano)-treated animals compared with placebo (p = 0.026). The apoA-I(Milano) treatment induced a 5% plaque regression (p = 0.003 vs. pre-treatment), whereas the placebo showed no significant effect. Plaque regression by apoA-I(Milano) was associated with a reduction in plaque macrophage density and a significant down-regulation in gene and protein expression of tissue factor, monocyte chemoattractant protein-1, and cyclooxygenase-2, as well as marked decrease in gelatinolytic activity. Conversely, cyclooxygenase-1 was significantly up-regulated. CONCLUSIONS: Acute plaque regression observed after short-term apoA-I(Milano) administration was associated with a significant reduction in suspected makers of plaque vulnerability in an experimental model of atherosclerosis.


Subject(s)
Anticholesteremic Agents/administration & dosage , Aortic Diseases/drug therapy , Aortic Diseases/metabolism , Apolipoprotein A-I/administration & dosage , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Phosphatidylcholines/administration & dosage , Animals , Aortic Diseases/diagnosis , Atherosclerosis/diagnosis , Disease Models, Animal , Gene Expression , Male , Rabbits , Random Allocation
11.
J Med Chem ; 49(1): 334-48, 2006 Jan 12.
Article in English | MEDLINE | ID: mdl-16392818

ABSTRACT

A series of long (11-15) hydrocarbon chain diols and diacids with various central functional groups and terminal gem-dimethyl or -methyl/aryl substituents was synthesized and evaluated in both in vivo and in vitro assays for its potential to favorably alter lipid disorders including metabolic syndrome. Compounds were assessed for their effects on the de novo incorporation of radiolabeled acetate into lipids in primary cultures of rat hepatocytes, as well as for their effects on lipid and glycemic variables in obese female Zucker fatty rats, Crl:(ZUC)-faBR. The most active compounds were hydroxyl-substituted symmetrical diacids and diols with a 13-atom chain and terminal gem-dimethyl substituents. Furthermore, biological activity was enhanced by central substitution with O, C=O, S, S=O compared to the methylene analogues and was diminished for compounds with central functional groups such as carbamate, ester, urea, acetylmethylene, and hydroxymethylene.


Subject(s)
Alcohols/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Dicarboxylic Acids/therapeutic use , Hydrocarbons/therapeutic use , Hyperlipidemias/drug therapy , Hypolipidemic Agents/therapeutic use , Administration, Oral , Alcohols/administration & dosage , Alcohols/chemical synthesis , Animals , Diabetes Mellitus, Experimental/metabolism , Dicarboxylic Acids/administration & dosage , Dicarboxylic Acids/chemical synthesis , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Tolerance , Female , Hepatocytes/drug effects , Hydrocarbons/administration & dosage , Hydrocarbons/chemical synthesis , Hyperlipidemias/metabolism , Hypolipidemic Agents/administration & dosage , Hypolipidemic Agents/chemical synthesis , In Vitro Techniques , Lipids/antagonists & inhibitors , Lipids/biosynthesis , Molecular Structure , Rats , Rats, Zucker , Structure-Activity Relationship , Time Factors
12.
Bioorg Med Chem ; 13(1): 223-36, 2005 Jan 03.
Article in English | MEDLINE | ID: mdl-15582467

ABSTRACT

A series of cycloalkyl-substituted oxo-alkanedicarboxylic acids have been prepared by the TosMIC methodology departing from haloalkyl-substituted cycloalkylcarboxylic esters. cyclopropyl derivatives showed IC(50) activity in the 0.3-1.0 microM range on the de novo incorporation of radiolabeled acetate into lipids in primary cultures of rat hepatocytes, and they showed lipid-regulating properties when tested in vivo in female obese Zucker fatty rats.


Subject(s)
Dicarboxylic Acids/pharmacology , Lipids/blood , Lipoproteins/blood , Animals , Cells, Cultured , Dicarboxylic Acids/chemistry , Hepatocytes/drug effects , Hepatocytes/metabolism , Magnetic Resonance Spectroscopy , Male , Mass Spectrometry , Rats , Rats, Sprague-Dawley
14.
J Lipid Res ; 43(6): 960-70, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12032172

ABSTRACT

LCAT is a key enzyme of reverse cholesterol transport that is essential to maintain HDL-mediated lipid transport and cholesterol homeostasis. Alterations in LCAT expression have a profound effect on plasma HDL cholesterol concentrations. Previously LCAT mRNA and activity were shown to be regulated by several inflammatory cytokines, including the pleiotrophic cytokine interleukin-6 (IL-6). A series of full-length and sequential deletion LCAT promoter constructs were used to determine whether inflammatory stimuli affect LCAT transcription and to further identify functional, cytokine-responsive promoter regions that mediate this response. Using transfected HepG2 cells, results indicate that treatment with IL-6 induced a 2.5-fold activation of full-length LCAT promoter activity. A minimal (-1514 bp to -1508 bp) IL-6 response element with high sequence homology to the signal transducer and activator of transcription (STAT) family member, STAT3, was mapped within the distal promoter and shown to be sufficient to mediate the IL-6 response. Further, overexpression of STAT3 significantly enhanced the effect of IL-6 on LCAT promoter activity. These data suggest that the IL-6 responsive transcription factor, STAT3, contributes to LCAT transcriptional regulation. The elucidation of distinct biochemical signaling pathways associated with inflammation may provide new insight into transcriptional regulation of genes involved in lipid metabolism.


Subject(s)
Interleukin-6/metabolism , Phosphatidylcholine-Sterol O-Acyltransferase/genetics , Promoter Regions, Genetic , Response Elements , Binding Sites , DNA-Binding Proteins/metabolism , Humans , Interleukin-1/metabolism , STAT3 Transcription Factor , Trans-Activators/metabolism , Up-Regulation
16.
Atheroscler Suppl ; 3(4): 31-8, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12573361

ABSTRACT

Although pharmacologic intervention to treat atherosclerosis originally focused on lowering LDL-cholesterol levels as a therapeutic target, a number of intervention trials have also highlighted the powerful effect of elevating HDL-cholesterol levels to reduce cardiovascular morbidity and mortality. Although the mechanism(s) by which HDL beneficially alters the atherosclerotic disease process is (are) still unknown, it is presumed that high levels of HDL facilitate the efflux of cholesterol from the arterial wall, thereby enhancing the transport of cholesterol and other lipids from arteries back to the liver for biliary excretion as fecal sterols and bile acids. It has therefore been hypothesized that through a rapid facilitation of HDL mediated cholesterol efflux from arteries by infusion of synthetic apolipoprotein A-I (apoA-I)/phospholipid (A-I/PL) complexes, HDL therapy could have an acute therapeutic application to treat cardiovascular disease at the site of action, namely the vulnerable, unstable atherosclerotic plaque. Single high dose infusions and repeated injections of lower doses of apoA-I variants or mimetics complexed to phospholipids have produced remarkable effects on the progression and regression of atherosclerosis in animal models. The positive results of these preclinical experiments have compelled researchers to perform exploratory studies in human subjects in which reconstituted HDL and synthetic A-I/PL complexes are infused through a peripheral vein. These clinical studies are testing the hypothesis and the potential use of synthetic HDL as a new treatment modality for acute coronary syndromes. Given that there is an unmet medical need for new and more effective therapies to elevate HDL-cholesterol levels and improve HDL function, a historical review, update and discussion of the preclinical and clinical studies which support the use of HDL therapy for reducing cardiovascular morbidity and mortality is warranted.


Subject(s)
Arteriosclerosis/drug therapy , Arteriosclerosis/physiopathology , Lipoproteins, HDL/physiology , Lipoproteins, HDL/therapeutic use , Animals , Apolipoprotein A-I/physiology , Apolipoprotein A-I/therapeutic use , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...