Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Mol Cytogenet ; 17(1): 5, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38486332

ABSTRACT

BACKGROUND: Silver-Russel syndrome (SRS) is a congenital disorder which is mainly characterized by intrauterine and postnatal growth retardation, relative macrocephaly, and characteristic (facial) dysmorphisms. The majority of patients shows a hypomethylation of the imprinting center region 1 (IC1) in 11p15 and maternal uniparental disomy of chromosome 7 (upd(7)mat), but in addition a broad spectrum of copy number variations (CNVs) and monogenetic variants (SNVs) has been reported in this cohort. These heterogeneous findings reflect the clinical overlap of SRS with other congenital disorders, but some of the CNVs are recurrent and have therefore been suggested as SRS-associated loci. However, this molecular heterogeneity makes the decision on the diagnostic workup of patients with SRS features challenging. CASE PRESENTATION: A girl with clinical features of SRS but negatively tested for the IC1 hypomethylation and upd(7)mat was analyzed by whole genome sequencing in order to address both CNVs and SNVs in the same run. We identified a 11p13 microduplication affecting a region overlapping with a variant reported in a previously published patient with clinical features of Silver-Russel syndrome. CONCLUSIONS: The identification of a 11p13 microduplication in a patient with SRS features confirms the considerable contribution of CNVs to SRS-related phenotypes, and it strengthens the evidence for a 11p13 microduplication syndrome as a differential diagnosis SRS. Furthermore, we could confirm that WGS is a valuable diagnostic tool in patients with SRS and related disorders, as it allows CNVs and SNV detection in the same run, thereby avoiding a time-consuming diagnostic testing process.

2.
J Pathol ; 254(1): 70-79, 2021 05.
Article in English | MEDLINE | ID: mdl-33565124

ABSTRACT

Deep learning can detect microsatellite instability (MSI) from routine histology images in colorectal cancer (CRC). However, ethical and legal barriers impede sharing of images and genetic data, hampering development of new algorithms for detection of MSI and other biomarkers. We hypothesized that histology images synthesized by conditional generative adversarial networks (CGANs) retain information about genetic alterations. To test this, we developed a 'histology CGAN' which was trained on 256 patients (training cohort 1) and 1457 patients (training cohort 2). The CGAN synthesized 10 000 synthetic MSI and non-MSI images which contained a range of tissue types and were deemed realistic by trained observers in a blinded study. Subsequently, we trained a deep learning detector of MSI on real or synthetic images and evaluated the performance of MSI detection in a held-out set of 142 patients. When trained on real images from training cohort 1, this system achieved an area under the receiver operating curve (AUROC) of 0.742 [0.681, 0.854]. Training on the larger cohort 2 only marginally improved the AUROC to 0.757 [0.707, 0.869]. Training on purely synthetic data resulted in an AUROC of 0.743 [0.658, 0.801]. Training on both real and synthetic data further increased AUROC to 0.777 [0.715, 0.821]. We conclude that synthetic histology images retain information reflecting underlying genetic alterations in colorectal cancer. Using synthetic instead of real images to train deep learning systems yields non-inferior classifiers. This approach can be used to create large shareable data sets or to augment small data sets with rare molecular features. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Colorectal Neoplasms/genetics , Deep Learning , Image Interpretation, Computer-Assisted/methods , Microsatellite Instability , Humans
3.
Dtsch Med Wochenschr ; 145(20): 1450-1454, 2020 10.
Article in German | MEDLINE | ID: mdl-33022724

ABSTRACT

Artificial intelligence (AI) is currently transforming all aspects of our daily life, including the practice of medicine. Artificial neural networks are a key method of AI. They can very effectively detect subtle patterns in imaging data and speech or text data. This is highly relevant for the practice of gastroenterology. Here, we summarize the state of the art in AI in gastroenterology and outline major clinical applications. Our focus is on AI-based analysis of endoscopy images, non-invasive imaging and histology images. In these applications, AI can support human pattern recognition. Beyond detection and classification of pathological findings, AI can predict clinical outcome from subtle image features.


Subject(s)
Artificial Intelligence , Digestive System Surgical Procedures , Image Interpretation, Computer-Assisted , Surgery, Computer-Assisted , Gastroenterology , Humans
4.
Gastroenterology ; 159(4): 1406-1416.e11, 2020 10.
Article in English | MEDLINE | ID: mdl-32562722

ABSTRACT

BACKGROUND & AIMS: Microsatellite instability (MSI) and mismatch-repair deficiency (dMMR) in colorectal tumors are used to select treatment for patients. Deep learning can detect MSI and dMMR in tumor samples on routine histology slides faster and less expensively than molecular assays. However, clinical application of this technology requires high performance and multisite validation, which have not yet been performed. METHODS: We collected H&E-stained slides and findings from molecular analyses for MSI and dMMR from 8836 colorectal tumors (of all stages) included in the MSIDETECT consortium study, from Germany, the Netherlands, the United Kingdom, and the United States. Specimens with dMMR were identified by immunohistochemistry analyses of tissue microarrays for loss of MLH1, MSH2, MSH6, and/or PMS2. Specimens with MSI were identified by genetic analyses. We trained a deep-learning detector to identify samples with MSI from these slides; performance was assessed by cross-validation (N = 6406 specimens) and validated in an external cohort (n = 771 specimens). Prespecified endpoints were area under the receiver operating characteristic (AUROC) curve and area under the precision-recall curve (AUPRC). RESULTS: The deep-learning detector identified specimens with dMMR or MSI with a mean AUROC curve of 0.92 (lower bound, 0.91; upper bound, 0.93) and an AUPRC of 0.63 (range, 0.59-0.65), or 67% specificity and 95% sensitivity, in the cross-validation development cohort. In the validation cohort, the classifier identified samples with dMMR with an AUROC of 0.95 (range, 0.92-0.96) without image preprocessing and an AUROC of 0.96 (range, 0.93-0.98) after color normalization. CONCLUSIONS: We developed a deep-learning system that detects colorectal cancer specimens with dMMR or MSI using H&E-stained slides; it detected tissues with dMMR with an AUROC of 0.96 in a large, international validation cohort. This system might be used for high-throughput, low-cost evaluation of colorectal tissue specimens.


Subject(s)
Brain Neoplasms/diagnosis , Colorectal Neoplasms/diagnosis , Deep Learning , Microsatellite Instability , Neoplastic Syndromes, Hereditary/diagnosis , Adult , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cohort Studies , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , DNA-Binding Proteins/metabolism , Female , Humans , Male , Middle Aged , Mismatch Repair Endonuclease PMS2/metabolism , MutL Protein Homolog 1/metabolism , MutS Homolog 2 Protein/metabolism , Neoplastic Syndromes, Hereditary/genetics , Neoplastic Syndromes, Hereditary/metabolism , Predictive Value of Tests , ROC Curve
6.
Nat Cancer ; 1(8): 789-799, 2020 08.
Article in English | MEDLINE | ID: mdl-33763651

ABSTRACT

Molecular alterations in cancer can cause phenotypic changes in tumor cells and their micro-environment. Routine histopathology tissue slides - which are ubiquitously available - can reflect such morphological changes. Here, we show that deep learning can consistently infer a wide range of genetic mutations, molecular tumor subtypes, gene expression signatures and standard pathology biomarkers directly from routine histology. We developed, optimized, validated and publicly released a one-stop-shop workflow and applied it to tissue slides of more than 5000 patients across multiple solid tumors. Our findings show that a single deep learning algorithm can be trained to predict a wide range of molecular alterations from routine, paraffin-embedded histology slides stained with hematoxylin and eosin. These predictions generalize to other populations and are spatially resolved. Our method can be implemented on mobile hardware, potentially enabling point-of-care diagnostics for personalized cancer treatment. More generally, this approach could elucidate and quantify genotype-phenotype links in cancer.


Subject(s)
Deep Learning , Neoplasms , Eosine Yellowish-(YS) , Hematoxylin , Humans , Mutation , Neoplasms/diagnosis
7.
Nat Med ; 25(7): 1054-1056, 2019 07.
Article in English | MEDLINE | ID: mdl-31160815

ABSTRACT

Microsatellite instability determines whether patients with gastrointestinal cancer respond exceptionally well to immunotherapy. However, in clinical practice, not every patient is tested for MSI, because this requires additional genetic or immunohistochemical tests. Here we show that deep residual learning can predict MSI directly from H&E histology, which is ubiquitously available. This approach has the potential to provide immunotherapy to a much broader subset of patients with gastrointestinal cancer.


Subject(s)
Deep Learning , Gastrointestinal Neoplasms/pathology , Microsatellite Instability , Gastrointestinal Neoplasms/diagnosis , Gastrointestinal Neoplasms/genetics , Humans , Immunotherapy
SELECTION OF CITATIONS
SEARCH DETAIL
...