Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 15(15): 5564-5572, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38638238

ABSTRACT

Compounds containing Mn-O bonds are of utmost importance in biological systems and catalytic processes. Nevertheless, mononuclear manganese complexes containing all O-donor ligands are still rare. Taking advantage of the low tendency of the pentafluoroorthotellurate ligand (teflate, OTeF5) to bridge metal centers, we have synthesized two homoleptic manganese complexes with monomeric structures and an all O-donor coordination sphere. The tetrahedrally distorted MnII anion, [Mn(OTeF5)4]2-, can be described as a high spin d5 complex (S = 5/2), as found experimentally (magnetic susceptibility measurements and EPR spectroscopy) and using theoretical calculations (DFT and CASSCF/NEVPT2). The high spin d4 electronic configuration (S = 2) of the MnIII anion, [Mn(OTeF5)5]2-, was also determined experimentally and theoretically, and a square pyramidal geometry was found to be the most stable one for this complex. Finally, the bonding situation in both complexes was investigated by means of the Interacting Quantum Atoms (IQA) methodology and compared to that of hypothetical mononuclear fluoromanganates. Within each pair of [MnXn]2- (n = 4, 5) species (X = OTeF5, F), the Mn-X interaction is found to be comparable, therefore proving that the similar electronic properties of the teflate and the fluoride are also responsible for the stabilization of these unique species.

2.
J Am Chem Soc ; 146(9): 6025-6036, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38408197

ABSTRACT

The formation of isolable monatomic BiI complexes and BiII radical species is challenging due to the pronounced reducing nature of metallic bismuth. Here, we report a convenient strategy to tame BiI and BiII atoms by taking advantage of the redox noninnocent character of a new chelating bis(germylene) ligand. The remarkably stable novel BiI cation complex 4, supported by the new bis(iminophosphonamido-germylene)xanthene ligand [(P)GeII(Xant)GeII(P)] 1, [(P)GeII(Xant)GeII(P) = Ph2P(NtBu)2GeII(Xant)GeII(NtBu)2PPh2, Xant = 9,9-dimethyl-xanthene-4,5-diyl], was synthesized by a two-electron reduction of the cationic BiIIII2 precursor complex 3 with cobaltocene (Cp2Co) in a molar ratio of 1:2. Notably, owing to the redox noninnocent character of the germylene moieties, the positive charge of BiI cation 4 migrates to one of the Ge atoms in the bis(germylene) ligand, giving rise to a germylium(germylene) BiI complex as suggested by DFT calculations and X-ray photoelectron spectroscopy (XPS). Likewise, migration of the positive charge of the BiIIII2 cation of 3 results in a bis(germylium)BiIIII2 complex. The delocalization of the positive charge in the ligand engenders a much higher stability of the BiI cation 4 in comparison to an isoelectronic two-coordinate Pb0 analogue (plumbylone; decomposition below -30 °C). Interestingly, 4[BArF] undergoes a reversible single-electron transfer (SET) reaction (oxidation) to afford the isolable BiII radical complex 5 in 5[BArF]2. According to electron paramagnetic resonance (EPR) spectroscopy, the unpaired electron predominantly resides at the BiII atom. Extending the redox reactivity of 4[OTf] employing AgOTf and MeOTf affords BiIII(OTf)2 complex 7 and BiIIIMe complex 8, respectively, demonstrating the high nucleophilic character of BiI cation 4.

3.
Inorg Chem ; 62(32): 12947-12953, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37505485

ABSTRACT

The pentafluoroorthotellurate group (teflate, OTeF5) is considered as a bulky analogue of fluoride, yet its coordination behavior in transition metal complexes is not fully understood. By reaction of [CoCl4]2- and neat ClOTeF5, we synthesized the first cobalt teflate complex, [Co(OTeF5)4]2-, which exhibits moisture-resistant Co-OTeF5 bonds. Through a combined experimental and theoretical (DFT and NEVPT2) study, the properties and electronic structure of this species have been investigated. It exhibits a distorted tetrahedral structure around the cobalt center and can be described as a d7 system with a quartet (S = 3/2) ground state. A comparative bonding analysis of the (pseudo)tetrahedral [CoX4]2- anions (X = OTeF5, F, Cl) revealed that the strength of the Co-X interaction is similar in the three cases, being the strongest in [Co(OTeF5)4]2-. In addition, an analysis of the charge of the Co center reinforced the similar electron-withdrawing properties of the teflate and fluoride ligands. Therefore, the [Co(OTeF5)4]2- anion constitutes an analogue of the polymeric [CoF4]2- in terms of electronic properties, but with a monomeric structure.

4.
Angew Chem Int Ed Engl ; 62(10): e202209437, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36541062

ABSTRACT

Diiron cofactors in enzymes perform diverse challenging transformations. The structures of high valent intermediates (Q in methane monooxygenase and X in ribonucleotide reductase) are debated since Fe-Fe distances of 2.5-3.4 Šwere attributed to "open" or "closed" cores with bridging or terminal oxido groups. We report the crystallographic and spectroscopic characterization of a FeIII 2 (µ-O)2 complex (2) with tetrahedral (4C) centres and short Fe-Fe distance (2.52 Å), persisting in organic solutions. 2 shows a large Fe K-pre-edge intensity, which is caused by the pronounced asymmetry at the TD FeIII centres due to the short Fe-µ-O bonds. A ≈2.5 ŠFe-Fe distance is unlikely for six-coordinate sites in Q or X, but for a Fe2 (µ-O)2 core containing four-coordinate (or by possible extension five-coordinate) iron centres there may be enough flexibility to accommodate a particularly short Fe-Fe separation with intense pre-edge transition. This finding may broaden the scope of models considered for the structure of high-valent diiron intermediates formed upon O2 activation in biology.


Subject(s)
Iron , Oxygen , Iron/chemistry , Spectrum Analysis , Crystallography, X-Ray , Oxygen/chemistry , Oxidation-Reduction
5.
Chemistry ; 28(63): e202202016, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-35851723

ABSTRACT

The pentafluoroorthotellurate group (teflate, OTeF5 ) is able to form species, for which only the fluoride analogues are known. Despite nickel fluorides being widely investigated, nickel teflates have remained elusive for decades. By reaction of [NiCl4 ]2- and neat ClOTeF5 , we have synthesized the homoleptic [Ni(OTeF5 )4 ]2- anion, which presents a distorted tetrahedral structure, unlike the polymeric [NiF4 ]2- . This high-spin complex has allowed the study of the electronic properties of the teflate group, which can be classified as a weak/medium-field ligand, and therefore behaves as the fluoride analogue also in ligand-field terms. The teflate ligands in [NEt4 ]2 [Ni(OTeF5 )4 ] are easily substituted, as shown by the formation of [Ni(NCMe)6 ][OTeF5 ]2 by dissolving it in acetonitrile. Nevertheless, careful reactions with other conventional ligands have enabled the crystallization of nickel teflate complexes with different coordination geometries, i.e. [NEt4 ]2 [trans-Ni(OEt2 )2 (OTeF5 )4 ] or [NEt4 ][Ni(bpyMe2 )(OTeF5 )3 ].

6.
Chemistry ; 24(20): 5341-5349, 2018 Apr 06.
Article in English | MEDLINE | ID: mdl-29265510

ABSTRACT

Two novel bis(triazolyl)carbazole ligands Hbtc1 (3,6-di(tert-butyl)-1,8-bis[(1-(3,5-di(tert-butyl)phenyl)-1,2,3-triazol-4-yl)]-9H-carbazole) and Hbtc2 (3,6-di(tert-butyl)-1,8-bis[(4-(3,5-di(tert-butyl)phenyl)-1,2,3-triazol-1-yl)]-9H-carbazole), differing in the regiochemistry of triazole attachment, have been synthesized by Cu-catalyzed azide-alkyne cycloaddition, the so-called "click-reactions". Metalation with Ru, Zn, and Ni precursors led to the formation of M(btc)2 complexes (M=Ru, Zn, Ni), with two deprotonated ligands coordinating to the metal center in tridentate fashion, forming almost perfectly octahedral coordination spheres. The redox properties of M(btc)2 complexes have been investigated by cyclic voltammetry, UV/Vis spectroscopy, spectroelectrochemistry, and chemically. The CV of the ruthenium complexes revealed three quasi-reversible one-electron oxidation processes, one assigned as the RuII/III couple and two originating from ligand-based oxidations. The CVs of both Zn and Ni complexes contained only two oxidation waves corresponding to the oxidation of the two ligands. The oxidation potentials of complexes derived from Hbtc1 ligands were found to be 300-400 mV lower than those of the corresponding complexes derived from Hbtc2, reflecting the significant difference in donation through the N(2) or N(3) atom of the triazole moiety.

SELECTION OF CITATIONS
SEARCH DETAIL
...