Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mutat Res ; 542(1-2): 59-64, 2003 Dec 09.
Article in English | MEDLINE | ID: mdl-14644354

ABSTRACT

BACKGROUND: Propofol is frequently used for general anesthesia in children although little is known about possible genotoxic effects in humans. We investigated the formation of sister chromatid exchanges (SCE) in metaphase chromosomes of T-lymphocytes of children as a marker for possible genotoxocity following total intravenous anesthesia with propofol for minor surgical procedures. METHODS: 40 children ASA classification I-III were included (ASA I n=34, ASA II n=5, ASA III n=1) in the study. Anesthesia was induced by propofol (3mg/kg) and alfentanil. Succinylcholine or rocuronium were administered for muscle relaxation. After tracheal intubation anesthesia was maintained by continuous propofol infusion at 12 mg/(kgh). Blood samples were drawn before induction and after termination of anesthesia. Following a 72 h cell culture period, 25 T-lymphocyte metaphases per blood sample for all children were analyzed for SCE frequencies. RESULTS: Total intravenous anesthesia with propofol on children did not influence SCE rates in metaphase chromosomes of T-lymphocytes. No SCE differences could be detected between blood samples before initiation and after termination of anesthesia (Wilcoxon signed rank test). Slightly elevated SCE rates were obtained in T-lymphocytes of girls compared to boys, but these differences did not reach statistical significance. CONCLUSIONS: Propofol anesthesia under the chosen conditions did not induce the formation of SCE in children in vivo. No genotoxic effect of a short term exposure to propofol during pediatric anesthesia had been observed.


Subject(s)
Anesthesia, Intravenous , Anesthetics, Intravenous/adverse effects , Propofol/adverse effects , Sister Chromatid Exchange/physiology , T-Lymphocytes/physiology , Adolescent , Child , Child, Preschool , Female , Humans , Male , Metaphase/physiology , Sister Chromatid Exchange/drug effects , T-Lymphocytes/drug effects
2.
Anesthesiology ; 96(6): 1420-6, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12170055

ABSTRACT

BACKGROUND: The opioid agonist meperidine has actions, such as antishivering, that are more pronounced than those of other opioid agonists and that are not blocked with nonselective opioid antagonists. Agonists at the alpha(2) adrenoceptors, such as clonidine, are very effective antishivering drugs. Preliminary evidence also indicates that meperidine interacts with alpha(2) adrenoceptors. The authors therefore studied the ability of meperidine to bind and activate each of the alpha(2)-adrenoceptor subtypes in a transfected cell system. METHODS: The ability of meperidine to bind to and inhibit forskolin-stimulated cyclic adenosine monophosphate formation as mediated by the three alpha(2)-adrenoceptor subtypes transiently transfected into COS-7 cells has been tested. The ability of the opioid antagonist naloxone and the alpha(2)-adrenoceptor antagonists yohimbine and RX821002 to block the analgesic action of meperidine in the hot-plate test was also assessed. The ability of meperidine to fit into the alpha(2B) adrenoceptor was assessed using molecular modeling techniques. RESULTS: Meperidine bound to all alpha2-adrenoceptor subtypes, with alpha(2B) having the highest affinity (alpha(2B), 8.6 +/- 0.3 microm; alpha(2C), 13.6 +/- 1.5 microm, P < 0.05; alpha(2A), 38.6 +/- 0.7 microm). Morphine was ineffective at binding to any of the receptor subtypes. Meperidine inhibited the production of forskolin-stimulated cyclic adenosine monophosphate mediated by all receptor subtypes but was most effective at the alpha(2B) adrenoceptor (alpha(2B), 0.6 microm; alpha(2A), 1.3 mm; alpha(2C), 0.3 mm), reaching the same level of inhibition (approximately 70%) as achieved with the alpha2-adrenoceptor agonist dexmedetomidine. The analgesic action of meperidine was blocked by naloxone but not by the alpha 2-adrenoceptor antagonists yohimbine and RX821002. The modeling studies demonstrated that meperidine can fit into the alpha(2B)-adrenoceptor subtype. CONCLUSION: Meperidine is a potent agonist at the alpha2 adrenoceptors at its clinically relevant concentrations, especially at the alpha(2B)-adrenoceptor subtype. Activation of the alpha(2B) receptor does not contribute significantly to the analgesic action of meperidine. This raises the possibility that some of its actions, such as antishivering, are transduced by this mechanism.


Subject(s)
Adrenergic alpha-2 Receptor Agonists , Adrenergic alpha-Agonists/pharmacology , Meperidine/pharmacology , Adenylyl Cyclase Inhibitors , Animals , Body Temperature Regulation/drug effects , Colforsin/pharmacology , Male , Mice , Mice, Inbred C57BL , Naloxone/pharmacology , Receptors, Adrenergic, alpha-2/chemistry , Receptors, Adrenergic, alpha-2/classification , Shivering/drug effects , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...