Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Infection ; 51(1): 83-90, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35648370

ABSTRACT

PURPOSE: Antibody assays against SARS-CoV-2 are used in sero-epidemiological studies to estimate the proportion of a population with past infection. IgG antibodies against the spike protein (S-IgG) allow no distinction between infection and vaccination. We evaluated the role of anti-nucleocapsid-IgG (N-IgG) to identify individuals with infection more than one year past infection. METHODS: S- and N-IgG were determined using the Euroimmun enzyme-linked immunosorbent assay (ELISA) in two groups: a randomly selected sample from the population of Stuttgart, Germany, and individuals with PCR-proven SARS-CoV-2 infection. Participants were five years or older. Demographics and comorbidities were registered from participants above 17 years. RESULTS: Between June 15, 2021 and July 14, 2021, 454 individuals from the random sample participated, as well as 217 individuals with past SARS-CoV-2 infection. Mean time from positive PCR test result to antibody testing was 458.7 days (standard deviation 14.6 days) in the past infection group. In unvaccinated individuals, the seroconversion rate for S-IgG was 25.5% in the random sample and 75% in the past infection group (P = < 0.001). In vaccinated individuals, the mean signal ratios for S-IgG were higher in individuals with prior infection (6.9 vs 11.2; P = < 0.001). N-IgG were only detectable in 17.1% of participants with past infection. Predictors for detectable N-IgG were older age, male sex, fever, wheezing and in-hospital treatment for COVID-19 and cardiovascular comorbidities. CONCLUSION: N-IgG is not a reliable marker for SARS-CoV-2 infection after more than one year. In future, other diagnostic tests are needed to identify individuals with past natural infection.


Subject(s)
COVID-19 , Immunity, Humoral , Male , Humans , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2 , Enzyme-Linked Immunosorbent Assay , Fever , Antibodies, Viral
2.
Plant Physiol ; 189(4): 2332-2356, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35567528

ABSTRACT

Many plants, including Arabidopsis (Arabidopsis thaliana), accumulate starch in the daytime and remobilize it to support maintenance and growth at night. Starch accumulation is increased when carbon is in short supply, for example, in short photoperiods. Mobilization is paced to exhaust starch around dawn, as anticipated by the circadian clock. This diel pattern of turnover is largely robust against loss of day, dawn, dusk, or evening clock components. Here, we investigated diel starch turnover in the triple circadian clock mutant lhy cca1 elf3, which lacks the LATE ELONGATED HYPOCOTYL and the CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) dawn components and the EARLY FLOWERING3 (ELF3) evening components of the circadian clock. The diel oscillations of transcripts for the remaining clock components and related genes like REVEILLE and PHYTOCHROME-INTERACING FACTOR family members exhibited attenuated amplitudes and altered peak time, weakened dawn dominance, and decreased robustness against changes in the external light-dark cycle. The triple mutant was unable to increase starch accumulation in short photoperiods. However, it was still able to pace starch mobilization to around dawn in different photoperiods and growth irradiances and to around 24 h after the previous dawn in T17 and T28 cycles. The triple mutant was able to slow down starch mobilization after a sudden low-light day or a sudden early dusk, although in the latter case it did not fully compensate for the lengthened night. Overall, there was a slight trend to less linear mobilization of starch. Thus, starch mobilization can be paced rather robustly to dawn despite a major disruption of the transcriptional clock. It is proposed that temporal information can be delivered from clock components or a semi-autonomous oscillator.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Circadian Clocks , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Circadian Clocks/genetics , Circadian Rhythm/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Plant , Hypocotyl/genetics , Hypocotyl/metabolism , Starch/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Plant Cell ; 32(6): 1949-1972, 2020 06.
Article in English | MEDLINE | ID: mdl-32276986

ABSTRACT

In Arabidopsis (Arabidopsis thaliana), TREHALOSE-6-PHOSPHATE SYNTHASE1 (TPS1) catalyzes the synthesis of the sucrose-signaling metabolite trehalose 6-phosphate (Tre6P) and is essential for embryogenesis and normal postembryonic growth and development. To understand its molecular functions, we transformed the embryo-lethal tps1-1 null mutant with various forms of TPS1 and with a heterologous TPS (OtsA) from Escherichia coli, under the control of the TPS1 promoter, and tested for complementation. TPS1 protein localized predominantly in the phloem-loading zone and guard cells in leaves, root vasculature, and shoot apical meristem, implicating it in both local and systemic signaling of Suc status. The protein is targeted mainly to the nucleus. Restoring Tre6P synthesis was both necessary and sufficient to rescue the tps1-1 mutant through embryogenesis. However, postembryonic growth and the sucrose-Tre6P relationship were disrupted in some complementation lines. A point mutation (A119W) in the catalytic domain or truncating the C-terminal domain of TPS1 severely compromised growth. Despite having high Tre6P levels, these plants never flowered, possibly because Tre6P signaling was disrupted by two unidentified disaccharide-monophosphates that appeared in these plants. The noncatalytic domains of TPS1 ensure its targeting to the correct subcellular compartment and its catalytic fidelity and are required for appropriate signaling of Suc status by Tre6P.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Nucleus/genetics , Cell Nucleus/metabolism , Gene Expression Regulation, Plant , Point Mutation/genetics , Promoter Regions, Genetic/genetics , Promoter Regions, Genetic/physiology , Sugar Phosphates/genetics , Sugar Phosphates/metabolism , Trehalose/analogs & derivatives , Trehalose/genetics , Trehalose/metabolism
4.
J Exp Bot ; 69(20): 4881-4895, 2018 09 14.
Article in English | MEDLINE | ID: mdl-30053131

ABSTRACT

Plants are exposed to varying irradiance and temperature within a day and from day to day. We previously investigated metabolism in a temperature-controlled greenhouse at the spring equinox on both a cloudy and a sunny day [daily light integral (DLI) of 7 mol m-2 d-1 and 12 mol m-2 d-1]. Diel metabolite profiles were largely captured in sinusoidal simulations at similar DLIs in controlled-environment chambers, except that amino acids were lower in natural light regimes. We now extend the DLI12 study by investigating metabolism in a natural light regime with variable temperature including cool nights. Starch was not completely turned over, anthocyanins and proline accumulated, and protein content rose. Instead of decreasing, amino acid content rose. Connectivity in central metabolism, which decreased in variable light, was not further weakened by variable temperature. We propose that diel metabolism operates better when light and temperature are co-varying. We also compared transcript abundance of 10 circadian clock genes in this temperature-variable regime with the temperature-controlled natural and sinusoidal light regimes. Despite temperature compensation, peak timing and abundance for dawn- and day-phased genes and GIGANTEA were slightly modified in the variable temperature treatment. This may delay dawn clock activity until the temperature rises enough to support rapid metabolism and photosynthesis.


Subject(s)
Arabidopsis/physiology , Circadian Clocks/physiology , Circadian Rhythm/physiology , Cold Temperature , Darkness , Environment, Controlled , Light
5.
J Exp Bot ; 68(16): 4463-4477, 2017 07 20.
Article in English | MEDLINE | ID: mdl-28673035

ABSTRACT

Irradiance from sunlight changes in a sinusoidal manner during the day, with irregular fluctuations due to clouds, and light-dark shifts at dawn and dusk are gradual. Experiments in controlled environments typically expose plants to constant irradiance during the day and abrupt light-dark transitions. To compare the effects on metabolism of sunlight versus artificial light regimes, Arabidopsis thaliana plants were grown in a naturally illuminated greenhouse around the vernal equinox, and in controlled environment chambers with a 12-h photoperiod and either constant or sinusoidal light profiles, using either white fluorescent tubes or light-emitting diodes (LEDs) tuned to a sunlight-like spectrum as the light source. Rosettes were sampled throughout a 24-h diurnal cycle for metabolite analysis. The diurnal metabolite profiles revealed that carbon and nitrogen metabolism differed significantly between sunlight and artificial light conditions. The variability of sunlight within and between days could be a factor underlying these differences. Pairwise comparisons of the artificial light sources (fluorescent versus LED) or the light profiles (constant versus sinusoidal) showed much smaller differences. The data indicate that energy-efficient LED lighting is an acceptable alternative to fluorescent lights, but results obtained from plants grown with either type of artificial lighting might not be representative of natural conditions.


Subject(s)
Arabidopsis/metabolism , Carbon/metabolism , Lighting/methods , Arabidopsis/growth & development , Environment, Controlled , Fluorescence , Light , Nitrogen/metabolism , Starch/metabolism , Sucrose/metabolism
6.
Plant J ; 85(3): 410-23, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26714615

ABSTRACT

Trehalose 6-phosphate (Tre6P) is an essential signal metabolite in plants, linking growth and development to carbon metabolism. The sucrose-Tre6P nexus model postulates that Tre6P acts as both a signal and negative feedback regulator of sucrose levels. To test this model, short-term metabolic responses to induced increases in Tre6P levels were investigated in Arabidopsis thaliana plants expressing the Escherichia coli Tre6P synthase gene (otsA) under the control of an ethanol-inducible promoter. Increased Tre6P levels led to a transient decrease in sucrose content, post-translational activation of nitrate reductase and phosphoenolpyruvate carboxylase, and increased levels of organic and amino acids. Radio-isotope ((14)CO2) and stable isotope ((13)CO2) labelling experiments showed no change in the rates of photoassimilate export in plants with elevated Tre6P, but increased labelling of organic acids. We conclude that high Tre6P levels decrease sucrose levels by stimulating nitrate assimilation and anaplerotic synthesis of organic acids, thereby diverting photoassimilates away from sucrose to generate carbon skeletons and fixed nitrogen for amino acid synthesis. These results are consistent with the sucrose-Tre6P nexus model, and implicate Tre6P in coordinating carbon and nitrogen metabolism in plants.


Subject(s)
Arabidopsis/enzymology , Carbon/metabolism , Glucosyltransferases/metabolism , Nitrate Reductase/metabolism , Phosphoenolpyruvate Carboxylase/metabolism , Sugar Phosphates/metabolism , Trehalose/analogs & derivatives , Amino Acids/metabolism , Arabidopsis/genetics , Escherichia coli/enzymology , Escherichia coli/genetics , Gene Expression , Glucosyltransferases/genetics , Nitrate Reductase/genetics , Nitrogen/metabolism , Phosphoenolpyruvate Carboxylase/genetics , Phosphorylation , Plants, Genetically Modified , Protein Processing, Post-Translational , Sucrose/analogs & derivatives , Sucrose/metabolism , Trehalose/metabolism , Ubiquitination
7.
Plant Cell ; 26(6): 2310-2350, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24894045

ABSTRACT

We investigated the systems response of metabolism and growth after an increase in irradiance in the nonsaturating range in the algal model Chlamydomonas reinhardtii. In a three-step process, photosynthesis and the levels of metabolites increased immediately, growth increased after 10 to 15 min, and transcript and protein abundance responded by 40 and 120 to 240 min, respectively. In the first phase, starch and metabolites provided a transient buffer for carbon until growth increased. This uncouples photosynthesis from growth in a fluctuating light environment. In the first and second phases, rising metabolite levels and increased polysome loading drove an increase in fluxes. Most Calvin-Benson cycle (CBC) enzymes were substrate-limited in vivo, and strikingly, many were present at higher concentrations than their substrates, explaining how rising metabolite levels stimulate CBC flux. Rubisco, fructose-1,6-biosphosphatase, and seduheptulose-1,7-bisphosphatase were close to substrate saturation in vivo, and flux was increased by posttranslational activation. In the third phase, changes in abundance of particular proteins, including increases in plastidial ATP synthase and some CBC enzymes, relieved potential bottlenecks and readjusted protein allocation between different processes. Despite reasonable overall agreement between changes in transcript and protein abundance (R2 = 0.24), many proteins, including those in photosynthesis, changed independently of transcript abundance.

8.
Plant Physiol ; 163(3): 1142-63, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24043444

ABSTRACT

Many plants accumulate substantial starch reserves in their leaves during the day and remobilize them at night to provide carbon and energy for maintenance and growth. In this paper, we explore the role of a sugar-signaling metabolite, trehalose-6-phosphate (Tre6P), in regulating the accumulation and turnover of transitory starch in Arabidopsis (Arabidopsis thaliana) leaves. Ethanol-induced overexpression of trehalose-phosphate synthase during the day increased Tre6P levels up to 11-fold. There was a transient increase in the rate of starch accumulation in the middle of the day, but this was not linked to reductive activation of ADP-glucose pyrophosphorylase. A 2- to 3-fold increase in Tre6P during the night led to significant inhibition of starch degradation. Maltose and maltotriose did not accumulate, suggesting that Tre6P affects an early step in the pathway of starch degradation in the chloroplasts. Starch granules isolated from induced plants had a higher orthophosphate content than granules from noninduced control plants, consistent either with disruption of the phosphorylation-dephosphorylation cycle that is essential for efficient starch breakdown or with inhibition of starch hydrolysis by ß-amylase. Nonaqueous fractionation of leaves showed that Tre6P is predominantly located in the cytosol, with estimated in vivo Tre6P concentrations of 4 to 7 µm in the cytosol, 0.2 to 0.5 µm in the chloroplasts, and 0.05 µm in the vacuole. It is proposed that Tre6P is a component in a signaling pathway that mediates the feedback regulation of starch breakdown by sucrose, potentially linking starch turnover to demand for sucrose by growing sink organs at night.


Subject(s)
Arabidopsis/metabolism , Feedback, Physiological/physiology , Plant Leaves/metabolism , Starch/metabolism , Sugar Phosphates/metabolism , Trehalose/analogs & derivatives , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chloroplasts/metabolism , Cytoplasmic Granules/metabolism , Cytoplasmic Granules/ultrastructure , Cytosol/metabolism , Ethanol/pharmacology , Glucosyltransferases/metabolism , Hydrolysis/drug effects , Immunoblotting , Maltose/metabolism , Microscopy, Electron, Scanning , Phosphates/metabolism , Plant Leaves/drug effects , Plants, Genetically Modified , Starch/ultrastructure , Time Factors , Trehalose/metabolism , Trisaccharides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...